
Week 1

Introduction. How to detect and

correct errors?

Version 2023-09-30. To accessible online version of this chapter

These notes are being revised to reflect the content of the course as taught in the

2023/24 academic year. Questions and comments on these lecture notes should be

directed to Yuri.Bazlov@manchester.ac.uk.

Synopsis

We discuss information transmission and introduce the most basic notions of Coding Theory:

channel, alphabet, symbol, word, Hamming distance and of course code. We show how

a code can detect and correct some errors that occur during transmission. We illustrate the

process using two simple examples of codes.

What is information?

It is fair to say that our age is the age of information. Huge quantities of information and

data literally flow around us and are stored in various forms.

Information processing gives rise to many mathematical questions. Information needs to be

processed because we may need, for example, to:

� store the information;

� encrypt the information;

� transmit the information.

1

ch1.html

Introduction. How to detect and correct errors? 2

For practical purposes, information needs to be stored efficiently, which leads to problems

such as compacting or compressing the information. For the purposes of data protection and

security, information may need to be encrypted. We will NOT consider these problems here.

The course basically addresses one (extremely important) problem that arises in connection

with information transmission.

We do not attempt to give an exhaustive definition of information. Whereas some mathe-

matical models for space, time, motion were developed hundreds of years ago, the modern

mathematical theory of information was only born in 1948 in the paper A Mathematical

Theory of Communication by Claude Shannon (1916–2001). The following will be enough

for our purposes:

Definition: information, alphabet, symbol

Fix a finite set F of two or more elements and call it the alphabet.

Elements of F are called symbols.

By information we mean a stream (a sequence) of symbols.

What does it mean to transmit information? What is a channel?

Informally, it means that symbols are sent by one party (the sender) and are received by

another party (receiver). The symbols are transmitted via some medium, which we will in

general refer to as the channel. More precisely, the channel is a mathematical abstraction of

various real-life media such as a telephone line, a satellite communication link, a voice (in a

face to face conversation between individuals), a CD (the sender writes information into it

— the user reads the information from it), etc.

In this course we will assume that when a symbol is fed into the channel (the input symbol),

the same or another symbol is read from the other end of the channel (the output symbol).

Thus, we will only consider channels where neither erasures (when the output symbol is

unreadable) nor deletions (when some symbols fed into the channel simply disappear) occur.

Working with those more general channels requires more advanced mathematical apparatus

which is beyond this course.

Importantly, we assume that there is noise in the channel, which means that the symbols

are randomly changed by the channel. Our model of information transmission is thus as

follows:

sender
stream of symbols−−−−−−−−−−→ channel

stream of symbols−−−−−−−−−−−−→
with random changes

receiver

The above discussion leads us to the following simplified definition of a channel, which will

be sufficient for this course.

Introduction. How to detect and correct errors? 3

Definition: memoryless channel

Fix the alphabet F . A memoryless channel is a function which has one argument

— the input symbol x ∈ F — and one output, a random output symbol y ∈ F

which depends only on x.

The definition says for each x ∈ F which is sent via the channel (i.e., given as input), there

is a probability distribution on F which shows which symbol will be received (output) with

which probability.

A noiseless channel is the identity function which reads the input symbol x and outputs x

with probability 1. However, more generally a channel is noisy, meaning that, if x is sent,

the received symbol can be either x with probability less than 1, or another symbol.

Memoryless means that the received symbol depends only on x and not on symbols which

may have been sent via the channel before x. We describe an example of a memoryless

noisy channel, BSC (p), below.

When a symbol x ∈ F is sent, there are two possible outcomes:

� The received symbol is x. We say that no error occurred in this symbol.

� The received symbol is y ̸= x. An error occurred in this symbol.

We formalise this in

Definition: symbol error

A symbol error is an event where a symbol x ∈ F is sent via the channel, and the

received symbol is y such that y ̸= x.

The binary symmetric channel with bit error rate p

Our most basic example of a channel “speaks” the binary alphabet, which we will now define.

Definition: binary alphabet, bit

The binary alphabet is the set F2 = {0, 1}.
A bit (the same as binary symbol) is an element of F2.

Definition: BSC (p)

The binary symmetric channel with bit error rate p transmits binary symbols

according to the following rule. A bit (0 or 1), sent via the channel, is received

Introduction. How to detect and correct errors? 4

unchanged with probability 1− p, and gets flipped with probability p:

0

1

1− p

p

p

1− p

0

1

Theoretically, we can consider BSC (p) with 0 ≤ p < 1
2 . Real-world binary channels are

modelled by BSC (p) with small p ranging from 10−2 (modem over a bad copper telephone

line in 1950s) down to 10−13 (modern fibre optics).

There are other channels which are mathematical models of media not well-approximated by

BSC (p). This includes channels which “speak” alphabets other than F2. Much of theory

we develop will work for general channels. However, explicit caculation of probabilities will

only be done for BSC (p).

What is a code and what is it used for?

A word is a finite sequence of symbols, and a code is a set of words. However, in this course

we only consider block codes — this means that all the words in the code are of the same

length n. Although variable length codes are used in modern applications, they are beyond

the scope of the course, and so we refer to block codes simply as codes.

The main application of codes is channel coding. This means that the sender uses the

chosen code to encode information before sending it via the channel. This allows the

receiver to achieve one of the following goals:

� detect most errors that occur in the channel and ask the sender to retransmit the

parts where errors are detected; or

� correct most errors that occur in the channel (nothing is retransmitted).

We will now formalise the definition of a code, explain encoding, and then show how error

detection works and how error correction works.

Definition: word

A word of length n in the alphabet F is an element of Fn. Here Fn is the set of

Introduction. How to detect and correct errors? 5

all n-tuples of symbols:

Fn = {v = (v1, v2, . . . , vn) | vi ∈ F, 1 ≤ i ≤ n}.

Notation: words

We may write a word (w1, w2, . . . , wn) ∈ Fn as w1w2 . . . wn if this is unambiguous.

So, for example, the binary words 000, 101 and 111 belong to F3
2, and are more fully

written as (0, 0, 0), (1, 0, 1) and (1, 1, 1), respectively.

We will denote words by underlined letters: w. Thus, w = w1w2 . . . wn where wi

denotes the ith symbol of the word w.

Definition: code, codeword

A code of length n in the alphabet F is a non-empty subset of Fn. We will denote

a code by C. That is, C ⊆ Fn, C ̸= ∅.

A codeword is an element of the code.

The sender and the receiver choose a code C ⊆ Fn for channel coding. To perform error

detection and correction, the sender must send only codewords via the channel. However,

information may contain arbitrary sequences of symbols, not just codewords, and so needs

to be encoded.

The encoding procedure that we consider requires the code C to have the same number

of elements as F k, the set of words of length k, for some positive integers k. Note that

C ⊆ Fn and #C = #(F k) means that k ≤ n.

Definition: encoder

An encoder for a code C is a bijective function ENCODE : F k → C.

Here is what the sender must do.

Procedure: encoding

Before transmission, a code C and an encoder ENCODE : F k → C must be fixed.

� The information stream is split up into chunks of length k, called messages.

� The sender takes each message u ∈ F k and replaces it with the codeword

c = ENCODE(u).

� Each codeword c is sent into the channel.

Introduction. How to detect and correct errors? 6

Note: “c sent into the channel” means that the symbols c1, c2, . . . , cn are consecutively sent

via the channel.

How to use a code to detect errors?

Recall that the sender transmits only codewords:

sender
codeword−−−−−−→

c∈C
channel

received word−−−−−−−−−→
y∈Fn

receiver

The sender transmits a codeword c ∈ C. The receiver receives a word y = y1y2 . . . yn which

may not be not the same as c, due to noise in the channel. Of course, if y /∈ C, the receiver

knows that y is not what was sent.

If, however, y ∈ C, the receiver has no way of knowing whether an error occurred, and must

assume that there was no error. The above suggests the following

Procedure: error detection

1. The sender sends a codeword c ∈ C via the channel.

2. The receiver receives a word y ∈ Fn:

� if y /∈ C, this is a detected error, and the receiver asks the sender to

retransmit the current codeword;

� if y ∈ C, the receiver accepts y. If y ∈ C and y ̸= c, this is an undetected

error.

3. If there are any more codewords to transmit, return to step 1.

We assume that every detected error is eliminated by retransmitting the codeword one or

more times. These retransmissions slow down the communication, but eventually the infor-

mation accepted by the receiver will consist of correct codewords and codewords containing

an undetected error.

How good is a code at detecting errors?

To select the most suitable error-detecting code for a particular application, or to decide

whether to use a code at all, we need to measure how good is error detection.

One way to quantify this is to ask how many symbol errors must occur in a codeword to

result in an undetected error. We will investigate this next week. This approach does not

explicitly take the parameters of the channel into account.

Another approach is to calculate Pundetect(C) for a particular channel:

Introduction. How to detect and correct errors? 7

Definition: Pundetect(C), the probability of an undetected error

Suppose that an alphabet F and a channel are given. Let C ⊆ Fn be a code. Assume

that a random codeword from C is sent via the channel. Then Pundetect(C) is the

probability that an undetected error occurs in the received word.

Note that Pundetect(C) expresses the average proportion of wrong codewords accepted by

the receiver. Good error detection means that Pundetect(C) is low.

E3: an example of a code used for error detection

We now introduce the code E3. Later, it will be seen as a particular case of En, the binary

even weight code of length n. The code consists of four codewords:

Definition: the code E3

E3 = {000, 011, 101, 110}, a subset of F3
2.

To set up error detection based on E3, we need an encoder. A standard choice is as follows:

E3 consists exactly of the binary words of length 3 which have an even number of 1s. Hence

a 2-bit message can be encoded into a 3-bit codeword of E3 by appending 0 or 1 so as to

make the total number of 1s even. The appended bit is known as the parity check bit:

Example: encoder for E3 (appending the parity check bit)

Define ENCODE : F2
2 → E3 by 00 7→ 000, 01 7→ 011, 10 7→ 101, 11 7→ 110.

Thus, if the information which needs to be transmitted is 001011, it is broken up into

messages 00, 10, 11, then E3-encoded as codewords 000, 101, 110 and sent via the channel.

How good is E3 at detecting errors? E3 is a binary code, so we may assume that the

communication channel is BSC (p) and calculate Pundetect(E3).

Suppose that the codeword 000 ∈ E3 is sent. For each word y ∈ F3
2 we find the probability

that y is received:

� 000 is received with probability (1− p)3 — for each of the three bits, the probability

of arriving unchanged is 1− p;

� 001, 010, 100 have probability p(1− p)2 each, and are detected errors;

� 011, 101 and 110, with probability p2(1− p) each, are undetected errors;

� 111 has probability p3 to be received, and is a detected error.

Introduction. How to detect and correct errors? 8

The total probability of an undetected error is 3p2(1− p).

If any codeword other than 000 is sent, the probability of an undetected error is the same

(Exercise: check this).

Hence Pundetect(E3) = 3p2(1 − p), assuming the channel is BSC (p). Later in the course,

we will obtain a formula for Pundetect(C) for a large class of binary codes C to avoid doing

a case-by-case analysis each time.

Thus, if information is sent unencoded (E3 is not used, no error detection), the average

proportion of incorrect bits in the output will be p. If, however, E3 is used for error detection,

the average proportion of incorrect bits in the output will be less than 3p2. If p ≪ 1, then

3p2 is much less than p — communication becomes more reliable when an error-detecting

code is used.

How to use a code for error correction?

In order to take full advantage of error detection, the receiver should be able to contact

the sender to request retransmission. In some situations this is not possible. We will now

see how to modify the above error detection set-up so that the receiver could recover from

errors, without contacting the sender.

Mathematics behind error correction got to be associated with the name of Richard Ham-

ming (1915–1998) who came up with an idea to set up an efficient error-correcting code.

In engineering literature, the set-up we are going to describe is referred to as forward error

correction (FEC).

The first basic concept we need for error correction is distance between words.

Definition: Hamming distance

The Hamming distance between two words x, y ∈ Fn is the number of positions

where the symbol in x differs from the symbol in y:

d(x, y) = #{i ∈ {1, . . . , n} : xi ̸= yi}.

Example: Hamming distace between some pairs of binary words

For example, in the set F3
2 of 3-bit binary words one has

d(101, 111) = 1 and d(101, 000) = 2.

Of course,

d(101, 101) = 0.

Introduction. How to detect and correct errors? 9

Lemma 1.1: properties of the Hamming distance

For any words x, y, z ∈ Fn,

1. d(x, y) ≥ 0; d(x, y) = 0 iff x = y.

2. d(x, y) = d(y, x).

3. d(x, z) ≤ d(x, y) + d(y, z) (the triangle inequality).

Remark: recall that a function d(−,−) of two arguments which satisfies axioms 1.–3. is

called a metric. This is familiar to those who studied Metric spaces. The Lemma says that

the Hamming distance turns Fn into a metric space.

Proof. 1. Since d(x, y) is a cardinality of a subset of {1, . . . , n}, it is an integer between 0

and n. Moreover, d(x, y) is 0 iff xi = yi for all i meaning that x = y.

2. Symmetry is clear as xi ̸= yi is equivalent to yi ̸= xi.

3. An index i such that xi = yi and yi = zi does not contribute to d(x, y) nor to d(y, z)

nor to d(x, z) (because xi = zi).

An index i such that xi ̸= yi or yi ̸= zi contributes at least 1 to d(x, y) + d(y, z), and can

contribute at most 1 to d(x, z).

Thus, every index i contributes to left-hand side at most as much as to the right-hand side.

Summing for i running over {1, . . . , n} proves the triangle inequality.

We will now use the Hamming distance to set up error correction. Let C ⊆ Fn be a code.

Definition: decoder, nearest neighbour

A decoder for C is a function DECODE : Fn → C such that for any y ∈ Fn, DECODE(y)

is a nearest neighbour of y in C.

A nearest neighbour of y ∈ Fn in C is a codeword c ∈ C such that

d(c, y) = min{d(z, y) : z ∈ C}.

In order to use error correction, the sender and the receiver choose a decoder DECODE : Fn →
C. The sender transmits codewords of C. The receiver decodes the received words:

sender
codeword−−−−−−→

c∈C
channel

received word−−−−−−−−−→
y∈Fn

decoded word−−−−−−−−−→
DECODE(y)∈C

receiver

Introduction. How to detect and correct errors? 10

Remark: what the decoder does; unencode

Thus, if the received word y is not a codeword, the decoder assumes that the codeword

closest to y was sent, and outputs such a codeword.

To restore the original message u ∈ F k, the codeword c ∈ C can be unencoded:

u = ENCODE−1(c).

It may happen that some words y ∈ Fn have more than one nearest neighbour in C, which

means that there exist more than one decoder function. In this course we assume that the

receiver fixes one particular decoder to make decoding deterministic.

Definition: decoded correctly

In the above setup, let c ∈ C be the transmitted codeword and let y ∈ Fn be the

received word. If DECODE(y) = c, we say that the received word is decoded correctly.

The following Claim shows that the error-correcting setup makes sense — at least, if no sym-

bol errors occurred in a codeword, the decoder will not introduce errors! Strictly speaking,

the Claim is unnecessary, because it will follow from part 2 of Theorem 2.1 given later.

Claim: a codeword is always decoded to itself

A codeword is its own unique nearest neighbour: indeed, d(−,−) is non-negative
hence d(c, c) = 0 = min{d(z, c) : z ∈ C}.
Therefore, a codeword is always decoded to itself:

y ∈ C =⇒ DECODE(y) = y.

How good is a code at correcting errors?

This can be measured in two ways. First, one can determine the maximum number of symbol

errors that can occur in a codeword which the decoder is guaranteed to correct. Second,

one can calculate the probability Pcorr(C) of correct decoding for a specific channel. We

will return to these later.

Rep(3,F2): an example of a code used for error correction

It is easy to see that the code E3 is not suitable for error correction. Indeed, suppose the

received word was 100. We note that 100 has three nearest neighbours in E3, namely 000,

110 and 101, all at distance 1. There is no reasonable way to decide which of these was

sent, so no efficient decoder.

Introduction. How to detect and correct errors? 11

We define a new code, the binary repetition code of length 3.

Definition: the code Rep(3,F2), encoder

Rep(3,F2) = {000, 111}, a subset of F3
2.

Define ENCODE : {0, 1} → Rep(3,F2) by ENCODE(0) = 000, ENCODE(1) = 111.

One can observe that every word in F3
2 has exactly one nearest neighbour in the code

Rep(3,F2), and here is how the decoder works: for each word y ∈ F3
2, the arrow points from

y to DECODE(y) ∈ Rep(3,F2).

Example: the decoder for Rep(3,F2)

010000

001

100

101 111

110

011

Why develop any more theory and not just use E3 and Rep(3,F2)?

The problem with these codes is that, for every bit of information, you need to transmit 1.5

bits (using E3) or 3 bits (using Rep(3,F2)), because encoding increases the number of bits.

Such an increase in transmission costs may be unacceptable, and so more efficient codes

need to be designed.

Concluding remarks for Chapter 1

Codes have been used for error correction for thousands of years: a natural language is

essentially a code! If we “receive” a corrupted English word such as PHEOEEM, we will

assume that is has most likely been THEOREM, because this would involve fewest mistakes.

The following examples are part of historical background to Coding Theory and are not

covered in lectures.

Example 1 (a real-world use of Coding Theory in scientific research)

Voyager 1 is a spacecraft launched by NASA in 1977. Its primary mission was to explore

Jupiter, Saturn, Uranus and Neptune. Lots of precious photographs and data was sent back

Introduction. How to detect and correct errors? 12

Figure 1.1: The Voyager spacecraft. Image taken from

https://voyager.jpl.nasa.gov/mission/spacecraft/instruments/

to Earth. Later, NASA scientists claimed that Voyager 1 reached the interstellar space.

Messages from Voyager 1 travel through the vast expanses of interplanetary space. Given that

the spacecraft is equipped with a mere 23 Watt radio transmitter (powered by a plutonium-

238 nuclear battery), it is inevitable that noise, such as cosmic rays, interferes with its

transmissions. In order to protect the data from distortion, it is encoded with the error-

correcting code called extended binary Golay code. We will look at this code later in the

course. Newer space missions employ more efficient and more sophisticated codes.

Example 2 (CD, a compact disc)

A more down-to-earth example of the use of error-correcting codes. A CD can hold up to

80 minutes of music, represented by an array of zeros and ones. The data on the CD is

encoded using a Reed-Solomon code. This way, even if a small scratch, a particle of dust or

a fingerprint happens to be on the surface of the CD, it will still play perfectly well — all

due to error correction.

However, every method has its limits, and larger scratches or stains may lead to something

like a thunderclap during playback!

https://voyager.jpl.nasa.gov/mission/spacecraft/instruments/

Introduction. How to detect and correct errors? 13

Figure 1.2: A punch card. Image from http://www.columbia.edu/cu/computinghistory

Example 3 (one of the first uses of a code for error correction)

In 1948, Richard Hamming was working at the famous Bell Laboratories. Back then, the data

for “computers” was stored on punch cards: pieces of thick paper where holes represented

ones and absences of holes represented zeros. Punchers who had to perforate punch cards

sometimes made mistakes, which frustrated Hamming.

Hamming was able to come up with a code with the following properties: each codeword

is 7 bits long, and if one error is made in a codeword (i.e., one bit is changed from 0 to

1 or vice versa), one can still recover the original codeword. This made the punch card

technology more robust, as a punch card with a few mistakes would still be usable. The

trade-off, however, was that the length of data was increased by 75%: there are only 16

different codewords, therefore, they can be used to convey messages which have the length

of 4 bits.

The original Hamming code will be introduced in the course soon!

http://www.columbia.edu/cu/computinghistory

Week 1

Exercises (answers at end)

Version 2023-10-01. To accessible online version of these exercises

Exercise 1.1. The Manchester code was first used in the Manchester Mark 1 computer

at the University of Manchester in 1949 and is still used in low-speed data transfer: e.g. TV

remote sending signals via infrared. This binary code consists of two codewords: 10 and 01.

The codeword 10 is interpreted by the recipient as the message 0, and 01 is understood to

mean 1; whereas the received word 00 or 11 indicates a detected error.

The following error-free fragment of a bit stream encoded by Manchester code had been

intercepted: . . . 010101x01011010 . . . What was the bit x?

Exercise 1.2. Consider the alphabet Z10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. The Luhn checksum

of a word x1x2 . . . x16 ∈ (Z10)
16 is π(x1) + x2 + π(x3) + x4 + π(x5) + · · · + x16 mod 10,

viewed as an element of Z10. Here π : Z10 → Z10 is defined by the rule “π(a) is the sum of

digits of 2a”. The Luhn code consists of all words in (Z10)
16 whose Luhn checksum is 0.

(i) Write down all values of π and check that π is a permutation of the alphabet Z10.

(ii) Find the total number of codewords of the Luhn code.

(iii) Prove that a single digit error is detected by the Luhn code.

(iv) Look at your 16-digit debit/credit card numbers. Are they codewords of the Luhn code?

If you have a card with a number which is not a codeword of the Luhn code, can you bring

it to the tutorial? Thanks!

14

ch1ex.html

Week 1

Exercises — solutions

Version 2023-10-01. To accessible online version of these exercises

Exercise 1.1. The Manchester code was first used in the Manchester Mark 1 computer

at the University of Manchester in 1949 and is still used in low-speed data transfer: e.g. TV

remote sending signals via infrared. This binary code consists of two codewords: 10 and 01.

The codeword 10 is interpreted by the recipient as the message 0, and 01 is understood to

mean 1; whereas the received word 00 or 11 indicates a detected error.

The following error-free fragment of a bit stream encoded by Manchester code had been

intercepted: . . . 010101x01011010 . . . What was the bit x?

Answer to E1.1. In . . . 010101x01011010 . . . , notice that 11 cannot be a codeword.

Therefore, the bit stream is split into codewords in the following way:

. . . 0|10|10|1x|01|01|10|10|

The codeword 1x must be 10 so x = 0.

Exercise 1.2. Consider the alphabet Z10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. The Luhn checksum

of a word x1x2 . . . x16 ∈ (Z10)
16 is π(x1) + x2 + π(x3) + x4 + π(x5) + · · · + x16 mod 10,

viewed as an element of Z10. Here π : Z10 → Z10 is defined by the rule “π(a) is the sum of

digits of 2a”. The Luhn code consists of all words in (Z10)
16 whose Luhn checksum is 0.

(i) Write down all values of π and check that π is a permutation of the alphabet Z10.

(ii) Find the total number of codewords of the Luhn code.

(iii) Prove that a single digit error is detected by the Luhn code.

(iv) Look at your 16-digit debit/credit card numbers. Are they codewords of the Luhn code?

If you have a card with a number which is not a codeword of the Luhn code, can you bring

it to the tutorial? Thanks!

15

ch1ex.html

Exercises — solutions 16

Answer to E1.2. (i) π is the following permutation of Z10:(
0 1 2 3 4 5 6 7 8 9

0 2 4 6 8 1 3 5 7 9

)
.

(ii) Every sequence of 15 digits is the beginning of exactly one Luhn codeword. Indeed, let

x1, . . . , x15 ∈ Z10 be arbitrary. Calculate z = π(x1)+x2+π(x3)+x4+π(x5)+ · · ·+π(x15).

Then the one and only Luhn codeword of the form x1x2 . . . x15x16 is determined by z+x16 ≡
0 mod 10. This is the same as x16 ≡ (−z) mod 10.

Therefore, the number of Luhn codewords is equal to the number of sequences of 15 digits,

that is, 1015.

(iii) If xi is replaced by yi, then the Luhn checksum changes by yi−xi mod 10 (if i is even)

or by π(yi) − π(xi) mod 10 (if i is odd). In any case, if yi ̸= xi, then neither of these

changes is zero mod 10, hence altering a single digit changes the Luhn checksum.

A codeword has Luhn checksum 0.

Hence changing a single digit in a codeword gives a word with non-zero Luhn checksum,

i.e., not a codeword, resulting in a detected error.

Week 2

Parameters. Bounds

Version 2023-10-01. To accessible online version of this chapter

Synopsis. Basic properties of a code C can be expressed by numbers called parameters.

We learn why such parameters as the rate, R, and the minimum distance, d(C), are

important when C is used for channel coding. We also learn to use the notation (n,M, d)q
and [n, k, d]q. It turns out that there is a trade-off between the rate and the minimum

distance: both cannot be high (good) at the same time. This trade-off is expressed by

inequalities known as bounds. We only prove the Hamming bound and the Singleton

bound in this course, although other bounds have been obtained in coding theory research.

Parameters of a code

Parameters are numerical characteristics of a code. The most important parameters are:

Definition: parameters of a code

Let F be an alphabet and C ⊆ Fn be a code. Then:

� q denotes the size of the alphabet, i.e., q = #F ;

� n is called the length of the code — each codeword consists of n symbols;

� M denotes the number of codewords in the code, i.e., M = #C;

� k = logq M is the information dimension of C;

� d(C) = min{d(v, w) : v, w ∈ C, v ̸= w} is the minimum distance of C;

� R = k/n is the rate of C;

� δ = d/n is the relative distance of C.

We say that C is an (n,M, d)q-code or an [n, k, d]q-code.

17

ch2.html

Parameters. Bounds 18

The importance of the minimum distance for error detection and correction

We will now see that the higher d(C), the more symbol errors per codeword is the code C

guaranteed to detect and correct.

Notation: [a] denotes the integer part of a real a; e.g., [3] = [3.5] = [π] = 3, [7.99] = 7.

Theorem 2.1: the number of errors detected/corrected by a code

Let C be a code with d(C) = d. Throughout the course, t will denote [(d − 1)/2].

Let v ∈ C and y ∈ Fn.

1. If 1 ≤ d(v, y) ≤ d − 1, then y /∈ C. Thus, if at most d − 1 errors occur in a

transmitted codeword, they will be detected.

2. If d(v, y) ≤ t, then y has a unique nearest neighbour in C, which is v. So if at

most t errors occur in a codeword, a decoder will correct them by decoding y

back to c.

Proof. 1. If y ∈ C then by definition of minimum distance, either d(v, y) = 0 or d(v, y) ≥ d.

So the statement follows by contrapositive.

2. We use proof by contradiction, so we must assume for contradiction that w is a nearest

neighbour of y in C such that w ̸= v. Then d(y, w) ≤ d(y, v) ≤ t so by the triangle

inequality

0 < d(v, w) ≤ d(v, y) + d(y, w) ≤ t+ t = 2t ≤ d− 1.

Hence v, w are distinct codewords at distance less than d. This contradicts d being the

minimum distance of C.

Remark

The Theorem is expressed by saying that a code of minimal distance d detects up

to d− 1 errors and corrects up to [(d− 1)/2] errors in a codeword.

Channel coding. The importance of rate

To understand why the information dimension k and hence the rate R are defined via

logarithm, we recall channel coding, the most common use case for codes discussed in the

previous chapter. Here is a diagram which shows channel coding with error correction:

sender
m−−−−−−→

message

ENCODE(m)−−−−−−−−→
codeword

channel
received−−−−−→
word

DECODE()−−−−−−→ ENCODE−1()−−−−−−−−→ receiver

Parameters. Bounds 19

Messages are arbitrary words of length k, that is, elements of F k. The cardinality of F k

is qk, because a word (u1, u2, . . . , uk) ∈ F k can be chosen in qk ways: q choices for u1, q

independent choices for u2 and so on. Therefore,

M = #C = #(F k) = qk =⇒ k = logq M.

For each k symbols of information, the sender will transmit a codeword of n symbols. Recall

that the rate is R = k
n . One has R ≤ 1 (see the trivial bound below):

Remark: high R, close to 1, is good

Encoding increases transmission costs by a factor of R−1. The higher the rate R, the

more economical and efficient the code is.

Although the increase in transmission costs is a proce to pay for error detection or correction,

we want this increase to be as small as possible. One can try to construct codes with

higher rate, without degrading the error detection or correction performance, by using more

sophisticated mathematics. This is one of the main themes in Coding Theory.

There are obstacles to increasing the rate. Mathematically, they are expressed by bounds.

Bounds

Proposition 2.2: the trivial bound

If [n, k, d]q-codes exist, then k ≤ n and d ≤ n.

Proof. Let C be an [n, k, d]q-code. Then, by definition, C is a non-empty subset of Fn with

#F = q. The cardinality of a set is greater than or equal to the cardinality of its subset. In

particular, M = #C ≤ #Fn = qn. Applying the monotone function logq to both sides of

the inequality, we obtain k = logq M ≤ n.

Furthermore, the Hamming distance between any two words of length n is an integer between

0 and n. Therefore, 0 < d(C) ≤ n for any code of length n.

It is easy to describe the codes which attain k = n. All of them are given in the following

Example: Fn, the trivial code of length n

The trivial code of length n over the alphabet F is the code C = Fn.

Exercise: prove that a code has k = n if and only if it is a trivial code. Show that trivial

codes have d = 1. Show that some codes are not trivial but still have d = 1.

Parameters. Bounds 20

We will now give a simple example of codes which attain d = n.

Example: Rep(n, F), the repetition code of length n

Rep(n, F) = {aaa . . . a | a ∈ F} ⊂ Fn is the repetition code of length n over the

alphabet F . All codewords are formed by repeating a symbol n times.

Exercise: prove that Rep(n, F) has d = n. Show that some codes are not repetition codes

but still have d = n.

The Hamming bound

To state the next bound, we recall that

(
n

i

)
is the number of ways to choose i positions

out of n. This integer is called the binomial coefficient. It is given by the formula

(
n

i

)
=

n!

(n− i)! i!
=

n(n− 1) . . . (n− i+ 1)

1 · 2 · . . . · i
.

Theorem 2.3: the Hamming bound

Denote t = [(d− 1)/2]. If (n,M, d)q-codes exist, M ≤
qn

t∑
i=0

(
n
i

)
(q − 1)i

.

Before proving the Theorem, we introduce

Definition: Hamming sphere

If y ∈ Fn and r ≤ n, the Hamming sphere with centre y and radius r is the set

Sr(y) = {v ∈ Fn : d(v, y) ≤ r}.

The number of words in the Hamming sphere depends only on the radius r (not on y):

Lemma 2.4: the cardinality of a Hamming sphere

#Sr(y) =

r∑
i=0

(
n

i

)
(q − 1)i.

Proof. To construct a word v at distance i from y, we need to choose i positions out of

n where y will differ from v. Then we need to change the symbol in each of the i chosen

Parameters. Bounds 21

positions to one of the other q − 1 symbols. The total number of choices for v which is at

distance exactly i from y is thus
(
n
i

)
(q − 1)i.

The Hamming sphere contains all vectors at distance 0 ≤ i ≤ r from v, so we sum over i

from 0 up to r. The Lemma is proved.

Proof of Theorem 2.3. First of all, we prove that spheres of radius t centred at distinct

codewords c do not overlap. Indeed, by Theorem 2.1(2), each word in St(c) has unique

nearest neighbour, which is c. Hence a word in St(c) cannot lie in another such sphere (a

word cannot have two unique nearest neighbours!)

Hence the whole set Fn contains M disjoint spheres centred at codewords. By Lemma 2.4,

each of the M spheres contains
∑t

i=0

(
n
i

)
(q − 1)i words. The number of elements in a

disjoint union of sets is equal to the sum of cardinalities of the sets, hence the total number

of words in the M spheres is M
∑t

i=0

(
n
i

)
(q − 1)i. Since the union of the M spheres is a

subset of Fn, this does not exceed #Fn = qn. The bound follows.

Given the length n and the minimum distance d, we may wish to know whether there are

codes with the number of codewords equal to the Hamming bound. Such a code would be

the most economical (highest possible number M of codewords). Such codes have a special

name:

Definition: perfect code

A code which attains the Hamming bound is called a perfect code.

It turns out that meaningful perfect codes are quite rare. When the number of symbols in

the alphabet is a prime power, a complete classification of perfect codes up to parameter

equivalence is known; we will see it later in the course.

Remark: what does it mean to attain the bound?

Attains the bound means: the inequality in the bound becomes equality for this code.

It is a mistake to say that perfect codes are those that “satisfy” the Hamming bound.

Every code satisfies the Hamming bound — only perfect codes attain it!

The Singleton bound

Another upper bound on the number M of codewords can be conveniently stated for k =

logq M .

Parameters. Bounds 22

Theorem 2.5: the Singleton bound

If [n, k, d]q codes exist, k ≤ n− d+ 1.

Proof. Let C be an [n, k, d]q-code. Consider the function f : C → Fn−d+1 where f(v) is

the word obtained from v by deleting the last d− 1 symbols.

I claim that f is an injective function. Indeed, if v, w ∈ C, v ̸= w, then by definition of the

minimum distance, v and w differ in at least d positions. Since f deletes only d−1 symbols,

the words f(v) and f(w) still differ in at least one position. So f(v) ̸= f(w). Injectivity of

f is proved.

Now, by the Pigeonhole Principle, injective functions f : C → Fn−d+1 exist only if #C ≤
#Fn−d+1. We conclude that#C ≤ qn−d+1 so that k = logq #C ≤ n−d+1 as claimed.

Definition: maximum distance separable code, MDS code

A code which attains the Singleton bound is called a maximum distance separable

(MDS) code.

Remark: the bounds do not work in reverse

It is important to remember that the converses to Theorems 2.3 and 2.5 do not hold.

That is, if the numbers n, k, d, q satisfy the Hamming bound and the Singleton bound,

it does not imply that an [n, k, d]q-code exists. For example, n, k, d, q may fail

further bounds, not covered in this course.

Week 2

Exercises (answers at end)

Version 2023-10-12. To accessible online version of these exercises

Exercise 2.1. Consider the Manchester code and the Luhn code. For each of these codes,

determine the parameters [n, k, d]q of the code; state how many errors the code can detect

and how many errors the code can correct; determine if the code is perfect and/or MDS.

Exercise 2.2. [alternative way to check that a code is perfect; may need this for the exam]

The proof of the Hamming bound in the lecture notes shows that a code C ⊆ Fn is perfect,

if and only if the (disjoint) spheres of radius t = [(d(C)− 1)/2], centred at codewords of C,

fully cover the set Fn of all words.

Equivalently, C is perfect iff every word in Fn is at distance ≤ t from some codeword.

(a) Prove that a perfect code has odd minimum distance d.

(Hint: if d is even, construct a word at distance d/2 from a codeword and show that it is

not at distance ≤ t from any codeword.)

(b) Show that binary repetition codes of odd lengths are perfect.

Exercise 2.3 (not done in the tutorial). Show that Rep(n, F) is not perfect if q = #F > 2.

(Hint: using three different symbols, write down a word at distance > n/2 from each

codeword.)

Exercise 2.4 (not done in the tutorial). Assume that the cost of transmitting one symbol

via a q-ary channel is cq. (Imagine a q-ary channel as a cable with q wires; the costs of

building and maintaining it would be roughly proportional to q.) Suppose that you are given

a very large number M and need to design a code with M codewords. You have the control

over the length n and the size q of the alphabet. Which q will ensure the lowest transmission

costs per codeword? In particular, are the binary channels (the type most widely used in

today’s computer networks) the most economical?

23

ch2ex.html

Week 2

Exercises — solutions

Version 2023-10-12. To accessible online version of these exercises

Exercise 2.1. Consider the Manchester code and the Luhn code. For each of these codes,

determine the parameters [n, k, d]q of the code; state how many errors the code can detect

and how many errors the code can correct; determine if the code is perfect and/or MDS.

Answer to E2.1.

The Manchester code: n = 2, q = 2, M = 2 so k = 1; d = 2 by inspection. A

[2, 1, 2]2-code, can detect up to 1 bit error. Does not correct errors. Is not perfect as

M = 2 < 22/
∑0

i=0

(
2
0

)
(2− 1)0 (using t = 0). Is MDS as 1 = 2− 2 + 1.

The Luhn code: n = 16, q = 10, M = 1015 so k = 15. One has d ≤ 2 as for example the

codewords 0000 . . . 0 and 9100 . . . 0 are at distance 2.

On the other hand, d > 1. Indeed, we showed last week that changing exactly one symbol

in a Luhn codeword cannot give a Luhn codeword. Hence no two codewords are at distance

1.

To conclude, the Luhn code is a [16, 15, 2]10-code.

Can detect up to 1 symbol error. Does not correct errors.

One has n− d+ 1 = 16− 2 + 1 = 15 = k — this is an MDS code. (It is not perfect; this

can be checked directly, or use an exercise below as d is even.)

Exercise 2.2. [alternative way to check that a code is perfect; may need this for the exam]

The proof of the Hamming bound in the lecture notes shows that a code C ⊆ Fn is perfect,

if and only if the (disjoint) spheres of radius t = [(d(C)− 1)/2], centred at codewords of C,

fully cover the set Fn of all words.

Equivalently, C is perfect iff every word in Fn is at distance ≤ t from some codeword.

24

ch2ex.html

Exercises — solutions 25

(a) Prove that a perfect code has odd minimum distance d.

(Hint: if d is even, construct a word at distance d/2 from a codeword and show that it is

not at distance ≤ t from any codeword.)

(b) Show that binary repetition codes of odd lengths are perfect.

Answer to E2.2. First of all, we explain why the equivalent way to check that the code

is perfect is valid. We know from the proof of Theorem 2.3 that the #C spheres St(c),

where c ∈ C, are disjoint. Each sphere contains
∑t

i=0

(
n
i

)
(q − 1)i words, hence the total

number of words covered by these spheres is (#C)
∑t

i=0

(
n
i

)
(q − 1)i. This number is equal

to #Fn = qn iff these spheres cover all words in Fn. On the other hand, this number is

equal to #Fn = qn iff the code C is perfect. Q.E.D.

(a) Assume for contradiction that a perfect C has even d(C) = d. Take any codeword w

of C and change the first d/2 symbols in w to obtain a word z ∈ Fn with d(z, w) = d/2.

Since C is perfect, there must be another codeword v such that d(v, z) ≤ t. Then by the

triangle inequality d(v, w) ≤ t+ d/2 ≤ (d− 1)/2 + d/2 < d, a contradiction.

(b) Rep(n,F2) consists of 0 = 00 . . . 0 and 1 = 11 . . . 1. Here n = 2t + 1. A word y ∈ Fn
2

may have ≤ t zero bits — then d(y, 1) ≤ t. Otherwise, y has t+1 or more zero bits, hence

≤ t one bits, and d(y, 0) ≤ t. This shows that every word is at distance ≤ t from one of

the two codewords.

Exercise 2.3 (not done in the tutorial). Show that Rep(n, F) is not perfect if q = #F > 2.

(Hint: using three different symbols, write down a word at distance > n/2 from each

codeword.)

Answer to E2.3. Assume that the alphabet F contains at least three symbols; for

simplicity, let F contain 0, 1 and 2. The repetition code Rep(n, F) has minimum distance

n, hence t = [(n− 1)/2].

Let n be odd — the case of even n follows from 2.2(a). Then n = 2t + 1. Consider the

word 0 . . . 01 . . . 12 which has t zeros, t ones and 1 two. It differs from each codeword in at

least t+ 1 positions, hence is not at distance ≤ t from any codeword. We have shown that

the code is not perfect.

Exercise 2.4 (not done in the tutorial). Assume that the cost of transmitting one symbol

via a q-ary channel is cq. (Imagine a q-ary channel as a cable with q wires; the costs of

building and maintaining it would be roughly proportional to q.) Suppose that you are given

a very large number M and need to design a code with M codewords. You have the control

over the length n and the size q of the alphabet. Which q will ensure the lowest transmission

costs per codeword? In particular, are the binary channels (the type most widely used in

today’s computer networks) the most economical?

Exercises — solutions 26

Answer to E2.4. The cost of transmitting one codeword is cqn. By the trivial bound,

n ≥ k = logq M so this cost is estimated from below as cq logq M = K
q

ln q
where the

constant K is c lnM . The function f(x) = x/ lnx decreases on (0, e) and increases on

(e,∞) (check this by differentiation or otherwise) so f(q) > f(3) if q > 3. Hence the only

candidates for the minimum are q = 2 and q = 3. Calculating f(2) ∼= 2.89 and f(3) ∼= 2.73,

we conclude that — if we accept the (somewhat arbitrary) assumptions in the problem —

ternary codes are the most economical.

Week 3

Linear codes

Version 2023-10-02. To accessible online version of this chapter

Synopsis. The most important class of codes is linear codes. Their ability to correct errors

is no worse than that of general codes, but linear codes are easier to implement in practice

and allow us to use algebraic methods. We learn how to find the minimum distance by

looking at weights, and how to define a linear code by its generator matrix.

The definition of a linear code

Reminder (vector spaces): let Fq denote the field of q elements. When we use Fq as the

alphabet, we refer to words in Fn
q as (row) vectors. The set Fn

q of all vectors of length n

has the structure of a vector space over the field Fq. If the vectors u, v are in Fn
q , we can

add the vectors together: u + v ∈ Fn
q , and multiply a vector by a scalar: λu ∈ Fn

q for all

λ ∈ Fq. The addition and the scalar multiplication are performed componentwise. We will

often write vectors in compact form, as words:

011011, 100110 ∈ F6
2 7→ 011011 + 100110 = 111101 ∈ F6

2.

Definition: linear code, codevector

A linear code is a subspace of the vector space Fn
q .

Codewords of a linear code are called codevectors.

This means that the zero vector 0 belongs to C, and that sums and scalar multiples of

codevectors are again codevectors. Thus, C is a vector space in its own right.

Discussion: Why are linear codes useful? (not examinable)

1. They seem to be as efficient as general codes. In particular, it was proved that Shannon’s

Theorem about the capacity of a channel (discussed later) is still true for linear codes.

27

ch3.html

Linear codes 28

2. It is possible to define a linear code without specifying all the codewords (see below).

3. The minimum distance is easier to calculate than for general codes (see below).

4. We can use algebra to design linear codes and to construct efficient encoding and decoding

algorithms.

The absolute majority of codes designed by coding theorists are linear codes. In the rest of

the course, (almost) all the codes we consider will be linear codes.

End of discussion.

Example: trivial, repetition codes

The trivial code Fn
q is a linear code. (Indeed, Fn

q is a vector subspace of itself.)

The repetition code Rep(n,Fq) over Fq is a linear code (exercise; will see soon).

To get non-trivial examples, we need to introduce more structure.

The weight

Definition: weight of a vector, weight of a code

The weight w(v) of a vector v ∈ Fn
q is the number of non-zero symbols in v.

The weight w(C) of a code C ⊆ Fn
q is w(C) = min{w(v) | v ∈ C \ {0}}.

Lemma 3.1: distance and weight

For any vectors v, y ∈ Fn
q , d(v, y) = w(v − y).

Proof. Indeed, d(v, y) is the number of positions i, 1 ≤ i ≤ n, where vi ̸= yi. Obviously,

this is the same as the number of positions i where vi− yi ̸= 0. By definition of the weight,

this is w(v − y), as claimed.

Recall that the minimum distance, d(C), of a code C is a very important parameter which

tells us how many errors can the code detect and correct in a codeword. The following

theorem shows how one can find d(C) if C is linear.

Theorem 3.2: minimum distance equals weight

d(C) = w(C) for a linear code C.

Proof. Take a codevector v such that w(C) = w(v). Observe, w(v) = w(v − 0) = d(v, 0)

but v ̸= 0 ∈ C so w(v) ≥ d(C). We proved that w(C) ≥ d(C).

Linear codes 29

Now take a pair y ̸= z ∈ C such that d(y, z) = d(C). Rewrite this as w(y − z). Since C is

linear, y − z ∈ C \ {0} so w(y − z) ≥ w(C). We proved that d(C) ≥ w(C).

Remark: in the proof, we twice used that C is linear: first, 0 ∈ C; second, y, z ∈ C implies

y − z ∈ C. This condition is essential.

Remark: given a linear code C, one needs to check only M − 1 vectors to compute d(C) =

w(C). For a non-linear code, one has to check M(M − 1)/2 pairs of words to compute the

minimum distance d.

Here is a non-trivial construction of a linear code.

Example: the zero sum code

For any finite field Fq and for any n ≥ 1 we can define the zero sum code in Fn
q as

Z = {(v1, v2, . . . , vn) ∈ Fn
q | v1 + v2 + · · ·+ vn = 0 in Fq}.

We note that the zero sum code in Fn
q is a linear code because Z is the set of solutions to

the homogeneous linear equation v1 + · · · + vn = 0. It is known from linear algebra (and

is easy to check directly) that the sum of two vectors satisfying this equation also satisfies

this equation, and scaling a vector satisfying this equation again satisfies the equation. In

other words, Z is a vector space.

Binary zero sum codes are very common and have a special name.

Example: The binary even weight code En

The binary even weight code of length n is defined as

En = {v ∈ Fn
2 : w(v) is even}.

Due to the rules of arithmetic in F2 we have

En = {x1x2 . . . xn : xi ∈ F2, x1 + x2 + · · ·+ xn = 0 in F2}

which shows that En is a particular case of a zero sum code, hence is a linear code.

Note: 0 is an even number! The binary even weight code contains the codeword 00 . . . 0.

Basic properties of the binary even weight code En

Minimum distance = weight: a vector with only one 1 has odd weight but a vector

1100 . . . 0 of weight 2 is in En. Hence d(En) = w(En) = 2. The code detects up to 1 error

and corrects up to 0 errors.

Linear codes 30

The number of codewords: in a codeword v = (x1, x2, . . . , xn), the first n − 1 bits

can be arbitrary (2n−1 combinations), and the last bit is uniquely determined by xn =

x1 + . . .+ xn−1, where + is the addition is in the field F2. We thus have 2n−1 codewords.

Another argument to that effect is as follows. We can take a binary word and flip (change)

its first bit. This operation splits the set Fn
2 into pairs of vectors, such that the vectors in a

pair only differ in the first bit. Each pair contains one vector of even weight and one vector

of odd weight. Therefore, the number of vectors of even weight is equal to the number of

vectors of odd weight, and is 1
2#Fn

2 = 2n−1.

Conclusion: En is an [n, n− 1, 2]2-code.

Remark: A widely used code. If an error is detected, the recipient will request retransmission

of the codeword where the error occurred. Error correction is not available.

The code generated by a matrix. A generator matrix of a linear code

We have an unlimited supply of linear codes, due to the following construction.

Definition: the linear code generated by a matrix

Let G be a k × n matrix with linearly independent rows r1, . . . , rk ∈ Fn
q . The code

C = {u1r1 + . . .+ ukrk | u1, . . . , uk ∈ Fq} ⊆ Fn
q

is said to be generated by the matrix G. In this case, the function

ENCODE : Fk
q → C, ENCODE(u) = uG for all u ∈ Fk

q

is the encoder for C given by the matrix G.

Proposition 3.3: properties of a code generated by a matrix

In the above definition, C is a linear code. The function ENCODE is a bijective linear

map between Fk
q and C. The information dimension of C is k and is equal to

vector space dimension, dimC.

Proof. The definition says that C is the span of r1, . . . , rk in the vector space Fn
q . By linear

algebra, a span is a subspace of Fn
q hence a linear code.

Matrix multiplication is linear in each argument so ENCODE(u) = uG is a linear function

of u = (u1, . . . , uk). As C consists of vectors of the form u1r1 + · · · + ukrk = uG, the

image of ENCODE is C so ENCODE is surjective. The kernel of ENCODE is made up of all

Linear codes 31

(u1, . . . , uk) such that u1r1 + . . . + ukrk = 0, but as r1, . . . , rk are linearly independent,

ker ENCODE = {0} and so ENCODE is injective, hence bijective.

Hence M = #C = #Fk
q = qk and so the information dimension of C is logq(M) = k.

On the other hand, the vector space dimension of C is, by definition, the number of element

in a basis of C. Note that the k-element set {r1, . . . , rk} is a basis of C, as this is a linearly

independent set which spans C. Hence dimC is also k.

In fact, all linear codes arise from the above construction. Indeed, we know from linear

algebra that every vector space C has a basis. So every linear code is generated by a matrix:

Definition: generator matrix

Let C ⊆ Fn
q be a linear code. A generator matrix of C is a matrix G =


r1
r2
...

rk

,
where the row vectors r1, . . . , rk are a basis of C. (Clearly, C is generated by any of

its generator matrices.)

Let us consider some simple matrices and work out the codes they generate.

Example: matrices that can generate a trivial code

The identity matrix In is a generator matrix for the trivial code, Fn
q . Any other n×n

matrix with linearly independent rows is also a generator matrix for the trivial code

of length n.

Example: matrices that generate repetition codes

The repetition code Rep(n,Fq) has generator matrix G =
[
1 1 . . . 1

]
, of size

1×n. The matrix λG for any λ ∈ Fq, λ ̸= 0 is also a generator matrix for Rep(n,Fq).

Example: matrices that generate the binary even weight code E3

E3 = {000, 011, 101, 110} has 4 = 22 codewords, so the dimension of this code is 2.

Therefore, a generator matrix has 2 rows and 3 columns.

To write down a generator matrix, we need to take two linearly independent code-

vectors. We must not use the zero codevector, 000, because a linearly independent

Linear codes 32

set must not contain the zero vector, but can use any two others. So, each of

G =

[
0 1 1

1 0 1

]
or G =

[
0 1 1

1 1 0

]
or G =

[
1 0 1

0 1 1

]
etc.

is a generator matrix for E3.

Discussion: storing generator matrix instead of the whole code

Thus, to work with a linear code, it is enough to store just its generator matrix instead

of storing all codevectors. This approach to linear codes has its practical advantages and

disadvantages.

The single advantage which outweighs everything else is the amount of storage space

required.

To visualise the difference between storing all the qk codewords of a linear code

and storing only k rows of a generator matrix, consider a binary code of dimension

about 1500 used in computer networking for error detection. We can store 1500

rows of a generator matrix, but it is absolutely impossible to store a list of all

21500 codewords. Indeed, the number 10100 (the googol) is believed to be bigger

than the number of electrons in the visible Universe; but googol is less than 2340.

Disadvantages. A generator matrix is in general not unique, because a basis of a vector

space C can be chosen in more than one way. It may not be obvious if two matrices generate

the same code (although it is easy to test by bringing both matrices to reduced row echelon

form and comparing the result).

If a linear code C is specified by a generator matrix G, it may be difficult to compute the

weight w(C) of C. Of course, the weight of C does not exceed, but is in general not equal

to, the minimum weight of a row of G. For some linear codes which have been used in

practice, the weight is not known!

Generator matrices in standard form

For a linear code C, the encoder, ENCODE(u) = uG, depends on the choice of a generator

matrix G. In practice, for many codes there is the best choice:

Linear codes 33

Definition: matrix in standard form

A matrix G is in standard form if its leftmost colums form an identity matrix:

G = [Ik |A] =


1 0 . . . 0 ∗ . . . ∗
0 1 . . . 0 ∗ . . . ∗

. . .

0 0 . . . 1 ∗ . . . ∗

 .

Note that entries in the last n− k columns, denoted ∗, are arbitrary elements of Fq.

If G is in standard form, then, after encoding, the first k symbols of the codeword show the

original message:

u ∈ Fk
q 7→ ENCODE(u) = uG = u[Ik |A] = [u |uA]

(this is an easy example of multiplication of block matrices). This means that it is easy to

unencode a codevector, simply by taking its first k symbols.

In this situation, the first k symbols of a codeword are called information symbols. The last

n − k symbols are called check symbols; their job is to protect the information from noise

by increasing the Hamming distance between codewords.

Theorem 3.4: generator matrix in standard form

If a generator matrix in standard form exists for a linear code C, it is unique, and any

generator matrix can be brought to the standard from by the following operations:

(R1) Permutation of rows.

(R2) Multiplication of a row by a non-zero scalar.

(R3) Adding a scalar multiple of one row to another row.

Proof. Not given — a standard fact from linear algebra (uniqueness of reduced row echelon

form). We will do examples to show how to find the generator matrix in standard form.

Remark. If we apply a sequence of the row operations (R1), (R2) and (R3) to a generator

matrix of a code C, we again obtain a generator matrix of C. This is implied in the Theorem,

and follows from the fact that a basis of a vector space remains a basis under permutations,

multiplication of an element of the basis by a scalar, and adding a scalar multiple of an

element to another element. This fact is known from linear algebra.

Examples of finding a generator matrix in standard form, and some codes which have no

generator matrix in standard form, are on example sheets. We consider one example here:

Linear codes 34

Example: bringing a generator matrix into standard form

The binary code C is generated by


0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 1 0

. Find the generator matrix in

standard form for C. Find the parameters of C. Identify the code C by its well-known

name.

Solution: apply row operations


0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 1 0

 (r1 ↔ r2)


1 0 1 1 1

0 1 1 1 1

1 1 0 1 1

1 1 1 1 0

 (r3 → r3+

r1, r4 → r4+r1)


1 0 1 1 1

0 1 1 1 1

0 1 1 0 0

0 1 0 0 1

 (r2 ↔ r4)


1 0 1 1 1

0 1 0 0 1

0 1 1 0 0

0 1 1 1 1

 (r3 → r3+r2, r4 → r4+r2)


1 0 1 1 1

0 1 0 0 1

0 0 1 0 1

0 0 1 1 0

 (r1 → r1 + r4)


1 0 0 0 1

0 1 0 0 1

0 0 1 0 1

0 0 1 1 0

 (r4 → r4 + r3)


1 0 0 0 1

0 1 0 0 1

0 0 1 0 1

0 0 0 1 1

.
The parameters of C are: length 5 (the number of columns of the generator matrix),

dimension 4 (the number of rows of the generator matrix). From the generator matrix in

standard form (its rows are also codevectors!) we can see that w(C) ≤ 2. In fact, all the

rows of the generator matrix are of even weight; hence they lie in the vector space E5. Hence

all their linear combinations lie in E5. Since dimC = 4 = dimE5, we have C = E5 (the

even weight code of length 5) and d(C) = w(C) = 2.

Week 3

Exercises (answers at end)

Version 2023-10-02. To accessible online version of these exercises

Exercise 3.1. Write down a generator matrix for the repetition code Rep(5,F7).

Exercise 3.2 (important — you need to know the ISBN-10 code for the exam).

Consider the field F11 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, X} of integers modulo 11; by convention,

X means ten. The ISBN-10 checksum of a word x1x2 . . . x10 in F10
11 is

1x1 + 2x2 + · · ·+ 10x10 =
10∑
i=1

ixi ∈ F11.

The ISBN-10 code, which was used to give unique IDs to books until it was superseded by

ISBN-13, consists of all vectors in F10
11 which have zero checksum. It is a linear code (the

set of solutions to a homogeneous linear equation is a vector space).

Show that d = 2 hence the code is not perfect. Deduce that the code detects a single error.

Exercise 3.3 (an exam style question). Let C be the ternary linear code generated by

G =

[
0 1 2 1

2 0 1 1

]
. (Reminder: ternary means that the alphabet is F3.)

(a) List all the codevectors of C. Find d(C) by inspection. Deduce that C is a perfect code.

Does C attain the Singleton bound?

(b) Find a generator matrix of C in standard form.

Exercise 3.4 (not done in tutorial). Show that the ISBN-10 code detects a transposition

error (when two unequal adjacent digits are swapped in a codeword, it is no longer a code-

word).

35

ch3ex.html

Exercises (answers at end) 36

Exercise 3.5 (not done in tutorial). (a) Show that the binary linear code generated by[
1 1 0 0

0 0 1 1

]
has no generator matrix in standard form.

(b) The ISBN-10 code has a generator matrix in standard form. Find it.

Week 3

Exercises — solutions

Version 2023-10-02. To accessible online version of these exercises

Exercise 3.1. Write down a generator matrix for the repetition code Rep(5,F7).

Answer to E3.1. Rep(n,Fq) consists of all vectors proportional to the vector 11 . . . 11 of

n ones. Hence the only row of the 1 × n matrix
[
1 1 . . . 1 1

]
spans the code, i.e.,

forms a spanning set, which is obviously linearly independent.

Multiplying the above generator matrix by any scalar λ ∈ Fq \ {0} also gives a generator

matrix for Rep(n,Fq).

For Rep(5,F7) we get
[
1 1 1 1 1

]
or any matrix obtained by scaling this one by a

non-zero scalar in F7.

Exercise 3.2 (important — you need to know the ISBN-10 code for the exam).

Consider the field F11 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, X} of integers modulo 11; by convention,

X means ten. The ISBN-10 checksum of a word x1x2 . . . x10 in F10
11 is

1x1 + 2x2 + · · ·+ 10x10 =
10∑
i=1

ixi ∈ F11.

The ISBN-10 code, which was used to give unique IDs to books until it was superseded by

ISBN-13, consists of all vectors in F10
11 which have zero checksum. It is a linear code (the

set of solutions to a homogeneous linear equation is a vector space).

Show that d = 2 hence the code is not perfect. Deduce that the code detects a single error.

Answer to E3.2.

To show that w(C) ≤ 2, take the codevector v = 0000110000. We have w(C) ≤ w(v) = 2.

37

ch3ex.html

Exercises — solutions 38

On the other hand, a vector 00 . . . 0xi0 . . . 0 of weight 1 cannot be in the code: its checksum

is ixi mod 11. Neither i nor xi is zero mod 11, and 11 is a prime, so ixi is not zero mod 11.

Thus, w(C) > 1.

It follows that w(C) = 2. Since d(C) = w(C) for linear codes, we have d(C) = 2.

Exercise 3.3 (an exam style question). Let C be the ternary linear code generated by

G =

[
0 1 2 1

2 0 1 1

]
. (Reminder: ternary means that the alphabet is F3.)

(a) List all the codevectors of C. Find d(C) by inspection. Deduce that C is a perfect code.

Does C attain the Singleton bound?

(b) Find a generator matrix of C in standard form.

Answer to E3.3. (a) First of all, it is useful to recall that the total number of codevectors

is qk where k is the number of rows in the generator matrix. In this case, qk = 32 = 9.

We need to list all the 9 linear combinations of the two rows of the matrix G,

r1 = [0 1 2 1], r2 = [2 0 1 1].

Let us do this by encoding all vectors of length 2, in matrix form. Remember, ‘encoding in

matrix form’ simply means that the codevector λ1r1 + λ2r2 is written as [λ1 λ2]G where

G =

[
r1
r2

]
:

[0 0]G = [0 0 0 0], [0 1]G = [2 0 1 1], [0 2]G = [1 0 2 2],

[1 0]G = [0 1 2 1], [1 1]G = [2 1 0 2], [1 2]G = [1 1 1 0],

[2 0]G = [0 2 1 2], [2 1]G = [2 2 2 0], [2 2]G = [1 2 0 1].

To find d(C), one could of course check all 36 pairwise distances between codewords — but

this is wrong, because we know that C is a linear code, so d(C) = w(C). We check each

of the 8 non-zero codevectors obtained above and conclude that w(C) = 3.

To show that C is perfect, let us check the Hamming bound (in logarithmic form): t = 1

so k = n− logq(
(
n
0

)
+
(
n
1

)
(q − 1)), 2 = 4− log3(1 + 4× 2), 2 = 4− log3 9 — true. Hence

the code is perfect.

Exercise: show that C is an MDS code (attains the Singleton bound).

(b) Once we know all the codevectors, a generator matrix in standard form does not

require any further calculations. Simply select the codevectors which begin with 10 and 01:

G =

[
1 0 2 2

0 1 2 1

]
.

Exercises — solutions 39

Exercise 3.4 (not done in tutorial). Show that the ISBN-10 code detects a transposition

error (when two unequal adjacent digits are swapped in a codeword, it is no longer a code-

word).

Answer to E3.4. We will show that when two adjacent unequal symbols in a vector

are swapped, the checksum of the vector is changed. Indeed, suppose a vector . . . xy . . .

(symbols in positions i, i+1) is changed to . . . yx The checksum changes by iy+ (i+

1)x− (ix+ (i+ 1)y) = x− y. This is not zero mod 11 as long as x ̸= y.

Therefore, a codeword (with checksum zero) becomes a non-codeword (with checksum not

zero) as a result of a transposition error.

Exercise 3.5 (not done in tutorial). (a) Show that the binary linear code generated by[
1 1 0 0

0 0 1 1

]
has no generator matrix in standard form.

(b) The ISBN-10 code has a generator matrix in standard form. Find it.

Answer to E3.5. (a) The codevectors of this code are 0000, 1100, 0011 and 1111. The

first row of a generator matrix in standard form must be a codevector and must start with

10. But no codevector starts with 10.

(b) We know that n = 10 and k = 9, so the generator matrix will have 9 rows and

10 columns; hence the first 9 columns will form the identity matrix, and we are left to

fill the last column only. Look at the first row of the generator matrix in standard form.

It is of the form 100000000∗. It must also be a codevector: its ISBN-10 checksum is

1× 1+2× 0+3× 0+ · · ·+9× 0+10×∗ = 0, so 1+10∗ = 0 whence ∗ = 1. We similarly

deal with the second row, 010000000∗: we have 2 × 1 + 10∗ = 0 so ∗ = 2. Continuing in

this fashion, we obtain

G =



1 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 2

0 0 1 0 0 0 0 0 0 3

0 0 0 1 0 0 0 0 0 4
. . .

0 0 0 0 0 0 0 0 1 9


.

Week 4

Decoding linear codes

Version 2023-10-07. To accessible online version of this chapter

Synopsis. We explicitly describe a decoder DECODE : Fn
q → C based on coset leaders

and a standard array for C. For binary C sent via a binary symmetric channel, we find

the probability Pundetect(C) of an undetected transmission error. It is related to the weight

enumerator of C. We also find the probability Pcorr(C) that a codeword is decoded correctly.

Cosets and coset leaders

It turns out that the following notion is of direct relevance to decoding:

Definition: coset

Given a linear code C ⊆ Fn
q and a vector y ∈ Fn

q , the coset of y is the set

y + C = {y + c | c ∈ C}.

We recall basic facts about cosets (see for example Algebraic Structures 1):

� C = 0 + C is itself a coset. (C is called the trivial coset.) Moreover, C is the coset

of any codeword c ∈ C.

� If y, z ∈ Fn
q , then either y + C = z + C (if y − z ∈ C) or (y + C) ∩ (z + C) = ∅.

� #(y + C) = #C = qk.

� There are
#Fn

q

#C
= qn−k distinct cosets.

Thus, the whole space Fn
q is split (partitioned) into qn−k cosets:

Fn
q = C ⊔ (a1 + C) ⊔ . . . ⊔ (aqn−k−1 + C).

40

ch4.html

Decoding linear codes 41

The above is true for any abelian group; but the following is specific to Coding Theory:

Definition: coset leader

A coset leader of a coset y + C is a vector of minimum weight in y + C.

Remark: warning — a coset leader may not be unique

There may be more than one coset leader in a coset. However, all coset leaders of a

given coset are of the same weight.

Proposition 4.1: the formula for a decoder for a linear code

For a linear code C ⊆ Fn
q , any decoder DECODE : Fn

q → C satisfies:

∀y ∈ Fn
q DECODE(y) = y − e where e is a coset leader of the coset y + C of y.

Proof. Let v = DECODE(y). Then v ∈ C. Put e = y− v. Since C is a linear code, −v ∈ C,

so e = y + (−v) ∈ y + C. We have proved that e must lie in the coset y + C.

Vector y must be decoded to its nearest neighbour in C, i.e., d(y, v) must be minimised.

Yet by Lemma 3.1 d(y, v) = w(y − v) = w(e). Hence the decoder must choose e so that

w(e) is minimal in the coset y + C. By definition, e must be a coset leader of y + C.

Standard array: construction

We now give a method to construct all cosets and to find one coset leader in each coset.

Definition: standard array

A standard array for a linear code C ⊆ Fn
q is a table with the following properties:

� the table has |C| = qk columns and qn−k rows;

� each row is a coset;

� the leftmost entry in each row is a coset leader of that row;

� the top row is the trivial coset (i.e., C itself);

� each entry is the sum of the leftmost entry in its row and the top of its column;

� the table contains every vector from Fn
q exactly once.

We explain how to construct a standard array, using the linear code C = {0000, 0111,

1011, 1100} ⊆ F4
2 as an example.

Decoding linear codes 42

Row 0 of the standard array: lists all codevectors (elements of C = 0 + C). They must

start from 0, but otherwise the order is arbitrary.

0000 0111 1011 1100

Row 1: out of vectors not yet listed, choose a1 of smallest weight — this guarantees that

a1 will be a coset leader. Fill in Row 1 by adding a1 to each codevector in Row 0.

Say, a1 = 0001. To list its coset, add it to row 0: e.g., 0001 + 0111 = 0110, etc.

0001 0110 1010 1101

Row 2: choose a2 of smallest weight not yet listed, and do the same as for Row 1.

Say, a2 = 0010, add it to row 0:

0010 0101 1001 1110

Row 3: same with, say, a3 = 0100:

0100 0011 1111 1000

Since we have filled 4 rows, and qn−k = 24−2 = 4, our standard array is complete:

Example: a standard array for the code C = {0000, 0111, 1011, 1100}

0000 0111 1011 1100

0001 0110 1010 1101

0010 0101 1001 1110

0100 0011 1111 1000

Standard array: decoding

Let C ⊆ Fn
q be a linear code. By Proposition 4.1, any decoder is given by

DECODE(y) = y − COSET LEADER(y + C).

This suggests the following decoding algorithm for C.

Algorithm 4.2: the standard array decoder

Preparation: construct a standard array for C.

Decoding :

� Receive a vector y ∈ Fn
q .

� Look up y in the standard array.

� Return the topmost vector of the column of y as DECODE(y).

Justification: the algorithm is correct because, by definition of a standard array,

Decoding linear codes 43

(a) Look-up of y will succeed as every vector in Fn
q is present in the array;

(b) the row of y starts with COSET LEADER(y + C), so

(c) the top of y’s column is y − COSET LEADER(y + C) so this is y decoded.

Example: use the standard array decoder

For the code C = {0000, 0111, 1011, 1100} and standard array constructed above,

� decode the received vectors 0011 and 1100;

� give an example of one bit error occurring in a codeword and being corrected;

� give an example of one bit error occurring in a codeword and not being corrected.

Solution. We work with the following standard array for C:

0000 0111 1011 1100

0001 0110 1010 1101

0010 0101 1001 1110

0100 0011 1111 1000

The received vector 0011 is in the second column, so DECODE(0011) = 0111. The received

vector 1100 is a codeword (in the fourth column), so DECODE(1100) = 1100.

Suppose that the codeword 0000 is sent. If an error occurs in the last bit, the word 0001 is

received and decoded correctly as 0000. If an error occurs in the first bit, the word 1000 is

received and decoded incorrectly as 1100.

Discussion: is a standard array decoder unique?

Recall that there may be more than one possible standard array for the code C. Indeed, in

the above example the coset 0100 + C has two coset leaders: 0100 and 1000. Thus, we

could construct a different standard array for C:

0000 0111 1011 1100

0001 0110 1010 1101

0010 0101 1001 1110

1000 1111 0011 0100

The decoder associated to this standard array is different from the decoder considered above.

Both decoders decode the same linear code C. A linear code can have more than one decoder.

However, if C is a perfect linear code, then each coset has only one coset leader, so the

decoder is unique. This property of perfect codes appears on the example sheets.

Decoding linear codes 44

Reminder (the number of errors corrected by a code)

Recall that a code with minimum distance d corrects t = [(d− 1)/2] errors.

The code C in the above example is linear, hence d(C) = w(C) = 2 (it is easy to find the

minimum weight of the code by inspection). This means that the code corrects
[
2−1
2

]
=

0 errors. That is, C is not guaranteed to correct even a single bit error occurring in a

codevector. And indeed, we saw in an example how one bit error occurred in a codevector

and was not corrected.

So, from the point of view of Hamming’s theory, this code C has no error-correcting capa-

bility. It still detects up to one error.

But in Shannon’s theory, error-detecting and error-correcting performance of a code are

measured probabilistically.

Error-detecting and error-correcting performance of a linear code: Shannon’s
theory point of view

Shannon’s Information Theory is interested in how likely is it that a transmission error in a

codeword is not detected/corrected by a decoder of C. We will answer these questions for

a binary linear code C transmitted via BSC (p).

Recall that this means that one bit (0 or 1), transmitted via the channel, arrives unchanged

with probability 1− p, and gets flipped with probability p:

0

1

1− p

p

p

1− p

0

1

When a codeword v is transmitted, the channel generates a random error vector and adds

it to v. By definition of BSC (p), for a given e ∈ Fn
2 one has

P (the error vector equals e) = (1− p)n−ipi, where i = w(e).

In determining Pundetect(C), the following notion is very useful:

Decoding linear codes 45

Definition: the weight enumerator

The weight enumerator of a linear code C ⊆ Fn
q is the polynomial

WC(x, y) =
∑

v∈C
xn−w(v)yw(v) = A0x

n +A1x
n−1y +A2x

n−2y2 + . . .+Any
n

in two variables x, y, where Ai = #{v ∈ C : w(v) = i}.

Theorem 4.3: Pundetect(C), the probability of an undetected error

Suppose that a codevector of a binary linear code C of length n is transmitted via

BSC (p). The probability of an undetected error is

Pundetect(C) = WC(1− p, p)− (1− p)n.

Proof. Let v ∈ C be the codevector being transmitted. Recall that an undetected error

means that the received vector v+ e is a codevector not equal to v. Note that, since v ∈ C

and C is a vector space,

v + e ∈ C, v + e ̸= v ⇐⇒ e ∈ C, e ̸= 0.

Therefore, an undetected error means that the error vector is a non-zero codevector. We

can now calculate

Pundetect(C) =
∑

e∈C, e̸=0

P (the error vector is e) =
∑

e∈C, e̸=0

(1− p)n−w(e)pw(e).

This is WC(1− p, p) without exactly one term, excluded by the constraint e ̸= 0, namely

(1− p)n−w(0)pw(0) = (1− p)n,

which gives the expression for Pundetect(C) as stated.

Remark: In general, Pundetect(C) is calculated assuming that the codeword v is picked at

random from the code. However, our proof shows that for a linear binary code and for the

binary symmetric channel the probability is the same for all codevectors.

Example: calculating the weight enumerator and Pundetect

The binary linear code C = {0000, 0111, 1011, 1100} has one codeword of weight 0,

zero codewords of weight 1, one codeword of weight 2 and two codewords of weight 3.

Hence the weight enumerator of C is

WC(x, y) = x4 + x2y2 + 2xy3.

Decoding linear codes 46

If a codeword of C is sent via BSC (p), an undetected error occurs with probability

Pundetect(C) = (1− p)2p2 + 2(1− p)p3.

Discussion. Knowing Pundetect(C) is useful when a code is used for error detection, e.g.,

if the receiver can request retransmission if an error is detected. Then Pundetect(C) is on

average the proportion of incorrect codevectors, hence incorrect symbols, accepted by the

receiver. A code should be designed for a particular channel so as to keep this probability

below an agreed threshold.

The probability of correct decoding

We will now find the probability of an error being corrected for C.

Theorem 4.4: Pcorr(C), the probability of correct decoding

Suppose that a codevector of a binary linear code C is transmitted via BSC (p). The

probability that the received vector will be decoded correctly is

Pcorr(C) =
∑n

i=0
αi(1− p)n−ipi,

where αi denotes the number of cosets where the coset leader is of weight i.

Proof. Recall that v ∈ C is decoded correctly if DECODE(v + e) = v. By Proposition 4.1,

DECODE(v + e) = v + e− COSET LEADER(v + e)

= v + e− COSET LEADER(e).

Therefore, correct decoding occurs if the error vector is the chosen coset leader of its coset.

We therefore have one good outcome per coset: namely, e equals the chosen coset leader

of the coset. Recall that that happens with probability (1− p)n−ipi where i is the weight of

the coset leader of the given coset. Summing over all cosets and gathering the like terms,

we obtain the formula for Pcorr(C) as stated (it does not depend on v).

Discussion. When is it important to know Pcorr(C)? In one-way communication channels

without retransmission even if an error is detected, the decoder produces a best guess as to

which codevector was sent. An example is computer memory, where information could have

been written (“sent”) long time ago, and it is not possible to “resend” it. Thus, 1−Pcorr(C)

is on average the proportion of incorrect codevectors, hence incorrect symbols, accepted by

the receiver. A code should be designed for a particular channel to keep 1−Pcorr(C) below

an agreed threshold.

Decoding linear codes 47

Example: calculation of Pcorr

Let C = {0000, 0111, 1011, 1100}. From the standard array

0000 0111 1011 1100

0001 0110 1010 1101

0010 0101 1001 1110

1000 1111 0011 0100

we can see that α0 = 1, α1 = 3, α2 = α3 = 0 (given by the leftmost column), so

Pcorr(C) = (1− p)4 + 3(1− p)3p.

Comparing codes using approximate values of Pundetect or Pcorr

Our analysis above gives, for a binary linear code C transmitted via BSC (p), the probabilities

Pundetect(C) and Pcorr(C) as polynomials in p.

In practical situations p is typically very small, so it is rarely useful to know all terms of these

polynomials in p. The term with the lowest power of p will dominate and can be used as an

approximate value of the probability. This makes comparing codes easier.

Example. We compare use of the code C against transmission of undencoded information

(“trivial binary code of length 1”).

If C is used for error detection: Pundetect(C) = (1 − p)2p2 + 2(1 − p)p3. This is a

polynomial of the form p2+o(p2) where o(p2) contains powers of p higher than 2. For small

p, the terms in o(p2) are negligible compared to p2. We conclude:

Pundetect(C) ∼ p2 whereas Pundetect(no encoding) = p,

i.e., the use of C improves the proportion of bad bits in the output from p to p2.

If C is used for error correction: 1 − Pcorr(C) = 1 − (1 − p)4 − 3(1 − p)3p = p + o(p)

(check this by opening the brackets). Thus,

1− Pcorr(C) ∼ p whereas 1− Pcorr(no encoding) = p.

Hence C is useless for error correction: its use does not improve the proportion of bad bits

in the output while increasing the volume of information transmitted two-fold (R = 0.5).

The above suggests that for error correction, more mathematically sophisticated codes need

to be designed. In the rest of the course, we will see how ideas from different areas of

mathematics are used in code constructions.

Week 4

Exercises (answers at end)

Version 2023-11-04. To accessible online version of these exercises

Exercise 4.1. Write down the weight enumerator of Rep(n,F2), more generally of Rep(n,Fq).

Notation: below, C ⊆ Fn
q is a linear code, d(C) = d, and t =

[
d−1
2

]
.

Exercise 4.2. Prove that each vector a of weight ≤ t in the space Fn
q is a unique coset

leader (that is, w(a) is strictly less than weights of all other vectors in its coset a+ C).

Hint. If a ̸= b are in the same coset, show that d ≤ w(a) + w(b). Then use d− t > t.

Exercise 4.3 (important fact about perfect linear codes — needed for exam). Assume C

is perfect. Use the Hamming bound to show that the number of cosets equals #St(0), i.e.,

there as many cosets as vectors of weight ≤ t in the space Fn
q . Deduce that every coset has

a unique coset leader, and that the coset leaders are exactly the vectors of weight ≤ t.

Exercise 4.4 (not done in tutorial). Find standard arrays for binary codes with each of the

following generator matrices. For each code, determine whether every coset has a unique

coset leader (i.e., if there is exactly one coset leader in each coset). Find the probability of

an undetected / uncorrected error for BSC (p) and argue whether the code is worth using

for this channel, compared to transmitting unencoded information.

G1 =

[
1 0

0 1

]
, G2 =

[
1 0 1

0 1 1

]
, G3 =

[
1 0 1 1 0

0 1 0 1 1

]
.

Exercise 4.5 (more weight enumerators — not done in tutorial). (a) As usual, let WC(x, y)

denote the weight enumerator of a q-ary linear code C. Show that WC(1, 0) = 1 and that

WC(1, 1) = qk where k = dimC.

(b) Show that the weight enumerator of the trivial binary code Fn
2 is WFn

2
(x, y) = (x+ y)n.

Can you write WFn
q
(x, y) in a similar form?

(c) Write down WE3(x, y). Can you suggest a compact way to write WEn(x, y)?

48

ch4ex.html

Week 4

Exercises — solutions

Version 2023-11-04. To accessible online version of these exercises

Exercise 4.1. Write down the weight enumerator of Rep(n,F2), more generally of Rep(n,Fq).

Answer to E4.1. Rep(n,F2) has one codevector of weight 0 and one codevector of weight

n. Hence WRep(n,F2)(x, y) = xn + yn.

Exercise: show that WRep(n,Fq)(x, y) = xn + (q − 1)yn.

Notation: below, C ⊆ Fn
q is a linear code, d(C) = d, and t =

[
d−1
2

]
.

Exercise 4.2. Prove that each vector a of weight ≤ t in the space Fn
q is a unique coset

leader (that is, w(a) is strictly less than weights of all other vectors in its coset a+ C).

Hint. If a ̸= b are in the same coset, show that d ≤ w(a) + w(b). Then use d− t > t.

Answer to E4.2. If a, b are in the same coset, then by properties of cosets, c := a− b is

a codevector. If a ̸= b then c ̸= 0 and so d ≤ w(c) = w(a − b) = d(a, b). By the triangle

inequality, d(a, b) ≤ d(a, 0) + d(0, b) = w(a) + w(b). Thus, d ≤ w(a) + w(b) as claimed.

Now assume w(a) ≤ t. Then w(b) ≥ d− w(a) ≥ d− t. But t < d
2 so d− t > t. We have

w(b) ≥ d− t > t ≥ w(a). This shows that a has strictly minimal weight among the vectors

in its coset, and so is the unique coset leader.

Exercise 4.3 (important fact about perfect linear codes — needed for exam). Assume C

is perfect. Use the Hamming bound to show that the number of cosets equals #St(0), i.e.,

there as many cosets as vectors of weight ≤ t in the space Fn
q . Deduce that every coset has

a unique coset leader, and that the coset leaders are exactly the vectors of weight ≤ t.

Answer to E4.3. By the previous exercise, the vectors a ∈ St(0) are unique coset leaders

of #St(0) distinct cosets. The total number of cosets is
qn

#C
.

49

ch4ex.html

Exercises — solutions 50

Now if C is perfect, then #C =
qn

#St(0)
(the right-hand side is the Hamming bound), and

so
qn

#C
= #St(0). Thus if C is perfect, cosets with a unique coset leader of weight ≤ t

exhaust all cosets, as claimed.

Exercise 4.4 (not done in tutorial). Find standard arrays for binary codes with each of the

following generator matrices. For each code, determine whether every coset has a unique

coset leader (i.e., if there is exactly one coset leader in each coset). Find the probability of

an undetected / uncorrected error for BSC (p) and argue whether the code is worth using

for this channel, compared to transmitting unencoded information.

G1 =

[
1 0

0 1

]
, G2 =

[
1 0 1

0 1 1

]
, G3 =

[
1 0 1 1 0

0 1 0 1 1

]
.

Answer to E4.4. G1 generates the trivial binary code of length 2. Because the code is

the whole space F2
2, its standard array consists of one row:

00 01 10 11

(the order of the codevectors after 00 is arbitrary). The only coset is the trivial coset which

has only one coset leader, 00.

G2 generates E3, the even weight code of length 3. It has 4 codevectors and 2 cosets:

000 101 011 110

001 100 010 111

Note that the non-trivial coset has three coset leaders; any of them could be put in column 1.

G3: list all the 4 codevectors and then use the algorithm for constructing the standard array.

One possible answer is given below:

00000 10110 01011 11101

10000 00110 11011 01101

01000 11110 00011 10101

00100 10010 01111 11001

00010 10100 01001 11111

00001 10111 01010 11100

11000 01110 10011 00101

01100 11010 00111 10001

Coset leaders of weight 0 and 1 are the only coset leaders in their cosets. Coset leaders of

weight 2 are not unique: e.g., 11000 and 00101 are coset leaders of the same coset.

Error probabilities. The code generated by G1 is the trivial code, so using it is the same

as sending unencoded information.

Exercises — solutions 51

The code generated by G2 has weight enumerator WE3(x, y) = x3 + 3xy2. Hence an

undetected error occurs with probability

Pundetect(E3) = WE3(1− p, p)− (1− p)3 = 3(1− p)p2 ∼ 3p2.

Note that this is of the same order as p2 but at a rate of 2/3 (recall the code considered in

the chapter with worse rate 1/2).

The probability of an uncorrected error here is 1−Pcorr(E3) = 1−(α0(1−p)3+α1p(1−p)2)
where α0 = 1 (one coset leader of weight 0) and α1 = 1 (one coset leader of weight 1) . We

have 1−Pcorr(E3) = 1−((1−p)3+p(1−p)2) = 1−(1−p+p)(1−p)2 = 1−(1−p)2 ∼ 2p.

The code E3 does not improve the probability of incorrect decoding. Indeed, Hamming’s

theory says that E3 has no error-correcting capability and can only be used for error detection.

The code generated by G3 has weight enumerator x5 + 2x2y3 + xy4. Hence

Pundetect = 2(1− p)2p3 + (1− p)p4 ∼ 2p3.

If p = 0.01, this is ≈ 2× 10−6, which is 5,000 times better than without encoding.

Furthermore, looking at the coset leaders, we find one coset leader of weight 0, α0 = 1; five

coset leaders of weight 1, α1 = 5; two coset leaders of weight 2, α2 = 2. This gives

1− Pcorr = 1− (α0(1− p)5 + α1p(1− p)4 + α2p
2(1− p)3)

= 1− ((1− p)2 + 5p(1− p) + 2p2)(1− p)3

= 8p2 − 14p3 + 9p4 − 2p5 ∼ 8p2.

If p = 0.01, incorrect decoding occurs with probability ≈ 8 × 10−4, which is 12.5 times

better than without encoding.

Of course, this improvement in reliability comes at a price: the rate of the code is only 0.4,

meaning that we have to transmit 2.5 times as much information.

Exercise 4.5 (more weight enumerators — not done in tutorial). (a) As usual, let WC(x, y)

denote the weight enumerator of a q-ary linear code C. Show that WC(1, 0) = 1 and that

WC(1, 1) = qk where k = dimC.

(b) Show that the weight enumerator of the trivial binary code Fn
2 is WFn

2
(x, y) = (x+ y)n.

Can you write WFn
q
(x, y) in a similar form?

(c) Write down WE3(x, y). Can you suggest a compact way to write WEn(x, y)?

Answer to E4.5. (a) Recall WC(x, y) =
∑

c∈C xn−w(c)yw(c). If y = 0, the only non-zero

term in this sum is the term without y which corresponds to the (unique) zero codevector

of the linear code C; thus, WC(x, 0) = xn and WC(1, 0) = 1. Also, WC(1, 1) =
∑

c∈C 1 =

#C = qk.

Exercises — solutions 52

(b) To work out WFn
q
(x, y), write it in the form WFn

q
(x, y) =

∑n
i=0Aix

n−iyi where Ai =

#{v ∈ Fn
q : w(v) = i}. Note that w(v) = d(v, 0), and in the proof of the Hamming bound

we calculated the number of words at distance i from 0 (or from any other fixed vector) to

be
(
n
i

)
(q − 1)i. Hence

WFn
q
(x, y) =

n∑
i=0

(
n

i

)
(q − 1)ixn−iyi = (x+ (q − 1)y)n.

(c) The even weight code E3 is {000, 011, 101, 110}, so that WE3(x, y) = x3 + 3xy2. The

weight enumerator of En will be obtained in the lectures as an application of the MacWilliams

identity.

Week 5

The dual code. Syndrome decoding

Version 2023-11-01. To accessible online version of this chapter

Synopsis. Every linear code C has a dual code, C⊥, and check matrices. While a generator

matrix G is used to encode messages into codevectors, a check matrix H serves to detect

errors — and to correct them using syndrome decoding.

Motivation. The inner product of vectors

Let C be a linear code. Given a received vector y, how to test whether y ∈ C? Storing

all codevectors of C is not an option for codes of large length and dimension, whose use is

dictated by modern applications to low-noise channels. Storing just a generator matrix G

of C is better in terms of storage space, but testing whether y is in the row space of G can

be computationally demanding.

Some codes, however, are defined by a single checksum — recall the even weight code and

the ISBN-10 code. A checksum of a given vector is easy to compute.

Extending the checksum approach, we introduce a check matrix which generates the dual

code. It turns out that this construction helps to correct errors as well (not just detect).

The first notion we need is:

Definition: inner product

For u, v ∈ Fn
q , the scalar (element of Fq) defined as u · v =

∑n
i=1 uivi is called the

inner product of the vectors u and v.

Example: some inner products in F3
2

For 111, 101 ∈ F3
2, one has

111·111 = 12+12+12 = 1, 111·101 = 1·1+1·0+1·1 = 0, 101·101 = 12+02+12 = 0.

53

ch5.html

The dual code. Syndrome decoding 54

If C ⊂ Fn
q is a set, v ∈ Fn

q , we may write v · C to denote the set {v · c | c ∈ C}.

Properties of the inner product

(1) Expression as a matrix product: u · v = u vT .

Explanation: we write elements of Fn
q as row vectors. Thus, u is a row vector (u1, . . . , un),

and vT is the transpose of v, so a column vector

(v1
v2
...
vn

)
. Multiplying u, an 1 × n matrix,

and vT , an n× 1 matrix, we obtain a 1× 1 matrix, which we identify with a scalar in Fq.

(2) Symmetry: u · v = v · u. (Explanation: this is easily seen from the definition.)

(3) Bilinearity: for a scalar λ ∈ Fq we have (u+λw) ·v = u ·v+λ(w ·v) and u · (v+λw) =

u · v + λ(u ·w). (Explanation: from linear algebra, the matrix product in u vT is bilinear.)

(4) Non-degeneracy: u · Fn
q = {0}, if and only if u = 0.

Explanation: let ϵi = (0, . . . , 0, 1, 0, . . . , 0) be the vector with ith symbol 1 and all other

symbols 0. Then u · ϵi = ui. So if u · Fn
q = {0}, then in particular u · ϵi = 0 hence ui = 0,

for all i, meaning that u is the zero vector. And if u = 0, then u · c = 0 for all c ∈ Fn
q .

The dual code

Definition: dual code

Given a code C ⊆ Fn
q , we define the dual code C⊥ as

C⊥ = {v ∈ Fn
q | v · C = {0}}.

We can say that C⊥ consists of all vectors orthogonal to the code C (where v

orthogonal to C means v · C = {0}).

Exercise. Using bilinearity of the inner product, show that C⊥ is a linear code.

Recall that Rep(n,F2) = {00 . . . 0, 11 . . . 1} ⊆ Fn
2 is the binary repetition code of length n.

We now work out the code Rep(n,F2)
⊥ using the definition.

By definition, Rep(n,F2)
⊥ = {v ∈ Fn

2 | v ·00 . . . 0 = 0, v ·11 . . . 1 = 0}. The first condition,
v · 0 = 0 is vacuous (holds for all vectors v ∈ Fn

2). The second condition, v · 11 . . . 1, means

v1 + v2 + . . .+ vn = 0 in F2, i.e., v ∈ En, the binary even weight code of length n. Thus:

Example: the dual code of the binary repetition code

Rep(n,F2)
⊥ = En.

The dual code. Syndrome decoding 55

Check matrices

Definition: check matrix

A check matrix for a linear code C means a generator matrix for C⊥.

One sometimes says parity check matrix (the term arose from applications of binary codes).

Theorem 5.1: properties of the dual code and a check matrix

If C ⊆ Fn
q is a linear code of dimension k, then:

i. dimC⊥ = n− k;

ii. C = {v ∈ Fn
q : vHT = 0} for any check matrix H of C.

Proof. We recall the Rank-Nullity Theorem from Linear Algebra: if M is a matrix with n

columns, then

rank(M) + dimNullspace(M) = n,

where rank(M) is the dimension of the span of the rows of M , and Nullspace(M) can be

written as {v ∈ Fn
q : MvT = 0}.

i. Consider the matrix
[
C
]
made up of all codevectors of C used as rows. TheNullspace(

[
C
]
)

is the set {v :
[
C
]
vT = 0}. Note that the column vector

[
C
]
vT is

c1v
T

c2v
T

...

 =

c1 · vc2 · v
...

,
which is zero if and only if the inner product c · v is 0 for all rows c of

[
C
]
, i.e., for all

codevectors c of C. By definition of the dual code, this happens exactly when v ∈ C⊥, so

Nullspace(
[
C
]
) = C⊥. By rank-nullity, dimC⊥ = n− rank(

[
C
]
). Since the rows of

[
C
]

span C, one has rank(
[
C
]
) = dimC = k and so dimC⊥ = n− k.

ii. By definition H generates the code C⊥; so by i., H has n−k rows, H =

 r1
...

rn−k

. Thus,
rank(H) = dimC⊥ = n− k, and so by rank-nullity, dimNullspace(H) = n− (n− k) = k.

Note that C ⊆ Nullspace(H): indeed, if c ∈ C, then ric
T = ri · c = 0 for all i because

ri ∈ C⊥, which means that HcT = 0. Since dimC = dimNullspace(H), it follows that

C = Nullspace(H), which is {v : HvT = 0}.

The law (AB)T = BTAT for the product of matrices implies that (vHT)T = HvT , and so

HvT is zero iff vHT is. Thus, C = {v ∈ Fn
q : vHT = 0} as claimed.

The dual code. Syndrome decoding 56

The syndrome of a vector

Definition: syndrome

Let H be a check matrix for a linear code C ⊆ Fn
q . Let y ∈ Fn

q . The vector

S(y) = yHT

is called the syndrome of y. The linear map S : Fn
q → Fn−k

q is the syndrome map.

Proposition 5.2: syndromes of vectors in the same coset

Let S be a syndrome map for a linear code C ⊆ Fn
q . If v, y ∈ Fn

q ,

� S(v) = S(y) ⇐⇒ v, y are in the same coset of C;

� S(v) = 0 ⇐⇒ v ∈ C.

Proof. yHT = vHT ⇐⇒ (y − v)HT = 0 ⇐⇒ y − v ∈ C. By definition of cosets, this

means that v is in the coset of y. In particular, S(v) = 0 means v ∈ 0 + C = C.

The use of syndromes in error detection and correction

If S(y) ̸= 0, y is not a codevector, so the syndrome map detects errors in a received vector.

To correct errors, we need to construct a decoder for the linear code C. If we know a check

matrix H for C, we can improve the standard array decoder for C. We will write the same

decoder differently; it will require much less memory but more calculations.

Algorithm 5.3: the syndrome decoder

Preparation. Construct a table of syndromes, with qn−k rows, of the form

Coset leader ai S(ai)

Start with the top row: the codeword 0 and its syndrome S(0) = 0.

At each step, choose a vector ai ∈ Fn
q of smallest weight such that S(ai) does not

appear in the table; then ai is a coset leader of a new coset.

Decoding.

� Receive a vector y ∈ Fn
q .

� Calculate S(y) = yHT .

The dual code. Syndrome decoding 57

� In the table, find ai with S(ai) = S(y). Then ai is the coset leader of y + C.

� Return DECODE(y) = y − ai.

Remark. The syndrome decoder is based on a choice of one coset leader in every coset.

This is the same as for the standard array decoder.

In fact, if the same coset leaders are chosen in both decoders, both decoders with yield the

same function DECODE : Fn
q → C. They differ only in the way this function is computed.

The number of arithmetic operations required to calculate the syndrome S(y) = yHT can

be of order n2, whereas the standard array decoder requires ∼ n operations to look up

a vector. On the other hand, the amount of memory required by the syndrome decoder

is proportional to qn−k which is better than qn for the standard array. The advantage is

especially significant for codes with high code rate
k

n
.

Nevertheless, for codes which have more algebraic structure (than just linear codes), decoding

algorithms exist which require even less storage, but the computation complexity is higher

compared to syndrome decoding. Some examples will appear from the next chapter onwards.

Example: example of syndrome decoding

Let C be the binary linear code with check matrix H =


0 0 1 0 0 0

1 0 0 1 0 0

1 1 0 0 1 0

0 1 0 0 0 1

.
(a) Construct the table of syndromes for C using the matrix H.

(b) Using the table of syndromes, decode the received vector y = 111111.

Solution.

(a) When calculating syndromes, it is useful to observe that the syndrome of a vector

0 . . . 010 . . . 0 (with 1 in position i and 0s elsewhere) is equal to the ith column of H,

transposed.

The syndrome map is linear, so the syndrome of a sum of two vectors is the sum of their

syndromes, etc.

For example, S(011000) = 0011 + 1000 = 1011 (the sum of the second and the third

columns of H, transposed).

The dual code. Syndrome decoding 58

vector syndrome leader?

000000 0000 yes

000001 0001 yes

000010 0010 yes

000100 0100 yes

001000 1000 yes

010000 0011 yes

100000 0110 yes

All vectors of weight 1 have different syndromes, so they all are coset leaders. We need more

coset leaders, hence we start looking at vectors of weight 2, then weight 3:

000011 0011 no, syndrome already in the table

000101 0101 yes

001001 1001 yes

001010 1010 yes

001100 1100 yes

010100 0111 yes

011000 1011 yes

101000 1110 yes

001101 1101 yes

011100 1111 yes

When we try a vector, say of weight 2, and find that is syndrome is already in the table, we

ignore that vector and try another one.

We found 16 = 26−2 coset leaders so we stop.

(b) S(111111) = 1010 which is the syndrome of the coset leader 001010 in the table.

Therefore, DECODE(111111) = 111111− 001010 = 110101.

Week 5

Exercises (answers at end)

Version 2023-10-24. To accessible online version of these exercises

Exercise 5.1. Let C be a linear code of length n and weight 1. Show: C⊥ has no codevectors

of weight n.

Exercise 5.2. Use Theorem 5.1 to show that (C⊥)⊥ = C for every linear code C.

Exercise 5.3. A linear code C is self-orthogonal, if ∀v, w ∈ C, v · w = 0; equivalently,

C ⊆ C⊥.

(a) Let G be a generator matrix for C. Show: C self-orthogonal⇔ GGT = 0 (zero matrix).

(b) Which of the following codes are self-orthogonal: Rep(n,F2), En, the ternary code

generated by G =

[
0 1 2 1

2 0 1 1

]
?

Exercise 5.4. A linear code C is called self-dual if C = C⊥. (Clearly, a self-dual code is

self-orthogonal.)

(a) Show: a linear [n, k, d]q-code C is self-dual ⇐⇒ C is self-orthogonal and k = n/2.

Deduce that self-dual codes have even length.

(b) [2013 exam] Show that a binary code generated by

[
1 0 1 0

0 1 0 1

]
is self-dual.

Exercise 5.5 (not done in tutorial). (a) [2013 exam, B6b] Show that binary self-orthogonal

codes have even weight. Hint: if c ∈ C, what is c · c?

(b) [2016 B5] Show: ternary self-orthogonal codes have weight divisible by 3. (Hint as in

(a).)

(c) [2015 B4] Prove that for every even n there exists a 5-ary self-dual code of length n.

(Hint: look for a matrix.)

59

ch5ex.html

Week 5

Exercises — solutions

Version 2023-10-24. To accessible online version of these exercises

Exercise 5.1. Let C be a linear code of length n and weight 1. Show: C⊥ has no codevectors

of weight n.

Answer to E5.1. Let c = (0, . . . , 0, λ, 0, . . . , 0) be a vector of weight 1 in C, where the

only non-zero symbol λ is in ith position. Then for any x = (x1, . . . , xn) ∈ C⊥ one has

x · c = 0 which reads λxi = 0. Because λ ̸= 0, this is equivalent to xi = 0. Hence the

weight of x is at most n− 1, because at least one symbol in x is zero.

Exercise 5.2. Use Theorem 5.1 to show that (C⊥)⊥ = C for every linear code C.

Answer to E5.2. Let C ⊆ Fn
q be a linear code of dimension k. Take c ∈ C and v ∈ C⊥.

By definition of the dual code, c ·v = 0. Since this is true for all v ∈ C⊥, by definition of the

dual code again, c ∈ (C⊥)⊥. We proved that C ⊆ (C⊥)⊥. Since dimC = k = n− (n− k)

which is dim(C⊥)⊥ by Theorem 5.1, one has C = (C⊥)⊥.

Exercise 5.3. A linear code C is self-orthogonal, if ∀v, w ∈ C, v · w = 0; equivalently,

C ⊆ C⊥.

(a) Let G be a generator matrix for C. Show: C self-orthogonal⇔ GGT = 0 (zero matrix).

(b) Which of the following codes are self-orthogonal: Rep(n,F2), En, the ternary code

generated by G =

[
0 1 2 1

2 0 1 1

]
?

Answer to E5.3.

(a) Recall that C = {uG : u ∈ Fk
q}. So C is self-orthogonal iff ∀u, v ∈ Fk

q , (uG) · (vG) =

uGGT vT = 0. The latter is true iff GGT is the k × k zero matrix (because, by taking u, v

to be vector units, uGGT vT can be made equal to each entry of GGT).

60

ch5ex.html

Exercises — solutions 61

(b) The repetition code Rep(n,F2) has generator matrix G = [11 . . . 1] (a single row of n

ones). We have GGT = 11 . . . 1 · 11 . . . 1 = 1 + 1 + · · · + 1 (n times) which is zero if n is

even and is 1 if n is odd. So Rep(n,F2) is self-orthogonal iff n is even.

Consider the vectors u = 1100 . . . 00 and v = 0110 . . . 00, of weight 2, in the even weight

code En. Note that the inner product u · v is 1. Therefore, En is not self-orthogonal...

The only gap in this argument is that to construct such vectors u and v, we need n ≥ 3.

And if n = 2, E2 = {00, 11} = Rep(2,F2) is self-orthogonal. If n ≥ 3, then En is not

self-orthogonal.

Finally, the ternary code has GGT =

[
0 0

0 0

]
(check this!) and so is self-orthogonal.

Exercise 5.4. A linear code C is called self-dual if C = C⊥. (Clearly, a self-dual code is

self-orthogonal.)

(a) Show: a linear [n, k, d]q-code C is self-dual ⇐⇒ C is self-orthogonal and k = n/2.

Deduce that self-dual codes have even length.

(b) [2013 exam] Show that a binary code generated by

[
1 0 1 0

0 1 0 1

]
is self-dual.

Answer to E5.4. (a) Self-orthogonal is equivalent to C ⊆ C⊥. Self-dual means C = C⊥;

this is equivalent to C ⊆ C⊥ AND dimC = dimC⊥. The equality of dimensions reads

k = n − k, i.e., n = 2k. Thus, the length of a self-dual code is twice its dimension; in

particular, the length is even.

(b) The code is self-orthogonal because G =

[
1 0 1 0

0 1 0 1

]
satisfies GGT =

[
0 0

0 0

]
. We

have n = 2k as 4 = 2× 2 so by (a) the code is self-dual.

Exercise 5.5 (not done in tutorial). (a) [2013 exam, B6b] Show that binary self-orthogonal

codes have even weight. Hint: if c ∈ C, what is c · c?

(b) [2016 B5] Show: ternary self-orthogonal codes have weight divisible by 3. (Hint as in

(a).)

(c) [2015 B4] Prove that for every even n there exists a 5-ary self-dual code of length n.

(Hint: look for a matrix.)

Answer to E5.5. (a) Let C ⊆ Fn
2 be a self-orthogonal binary code. Then in particular,

c · c = 0 for all c ∈ C. The inner product c · c rewrites as c21 + c22 + · · ·+ c2n = 0. Note that

in the field F2 one has x2 = x for all x. Hence c1+ c2+ · · ·+ cn = 0 for all c ∈ C. But this

says that the vector c is of even weight. We proved that if binary C is self-orthogonal, then

all codevectors of C are of even weight. In particular, w(C), the minimum positive weight

of a codevector of C, is even.

Exercises — solutions 62

(b) Let c ∈ C be the vector of weight w(C). Since C is self-orthogonal, c · c = 0 in F3.

Note that c · c = c21 + c22 + · · · + c2n is obtained by adding up the squares of all non-zero

symbols in c. But the square of any non-zero symbol is 1: 12 = 22 = 1 in F3. Hence c · c
is equal to the sum of w(C) 1s in F3; thus, w(C) is zero in F3, meaning that w(C) is a

multiple of 3.

(c) Consider the matrix G =
[

Ik | 2Ik

]
over the field F5, where n = 2k. Note that

GGT = I2k + 4I2k = 5I2k = 0 so the code C, generated by the matrix G, is self-orthogonal.

Moreover, C is self-dual as n = 2k.

Week 6

The Shannon limit (optional

material, not assessed)

Version 2023-10-17. To accessible online version of this chapter

Synopsis. This chapter is under development.

What is the main goal of Coding Theory?

Let codewords of a code C be transmitted via a given channel. Recall that the probability

of correct decoding Pcorr(C) is the probability that a codeword picked at random from C

and sent via the channel is decoded correctly.

It is not difficult to see that, unless the channel cannot transmit any information (e.g.,

BSC (0.5)), a code can be chosen so that this probability is arbitrarily close to 1. For example,

one can use repetition codes Rep(n, F) with large n. However, the rate of Rep(n, F) is 1/n

which tends to 0 as n→∞.

Shannon proved that it is possible to do much better than that. The following theorem is

not examinable:

Theorem 6.1: Shannon’s noisy-channel coding theorem

Each channel has capacity Cap, 0 ≤ Cap ≤ 1, such that:

� for any R < Cap, there exist a sequence of codes Cn of rate ≥ R so that

Pcorr(Cn) tends to 1.

� For each R′ > Cap, there exists a positive ϵ such that Pcorr(C) < 1− ϵ for all

codes C of rate ≥ R.

However, his was an existence proof not giving any constructive way to find the codes. One

can create codes Cn by picking codewords from Fn at random, but encoding and decoding

63

ch6.html

The Shannon limit (optional material, not assessed) 64

for such codes are computationally unfeasible because random codes lack structure.

So a specific goal of Coding Theory is to construct sequences of codes which approach

Shannon’s limit — at least binary codes for BSC (p), the capacity of which was calculated

by Shannon to be Cap(BSC (p)) = 1 − p log2 p
−1 − (1 − p) log2(1 − p)−1. Note that the

capacity of BSC (0.5) is 0 (this channel outputs random junk irrespective of the input) but

the capacity of BSC (p) is positive if p < 0.5.

In fact, constructible codes which come close to Shannon’s limit were only developed at the

end of last century, and became part of Ethernet, Wi-Fi etc within the last decade. It took

about fifty years to build up mathematical apparatus to achieve this.

Week 6

Exercises (answers at end)

Version 2023-10-17. To accessible online version of these exercises

Exercise 6.1 (optional, not discussed in class). Show that some standard families of binary

codes do not have rates approaching capacity of BSC (p).

65

ch6ex.html

Week 6

Exercises — solutions

Version 2023-10-17. To accessible online version of these exercises

Exercise 6.1 (optional, not discussed in class). Show that some standard families of binary

codes do not have rates approaching capacity of BSC (p).

Answer to E6.1.

66

ch6ex.html

Week 7

Hamming codes

Version 2023-11-04. To accessible online version of this chapter

Synopsis. Hamming codes are essentially the first non-trivial family of codes that we shall

meet. We give a construction of a q-ary Hamming code and prove that it is perfect with

minimum distance 3. We show that syndrome decoding works for Hamming codes in an

especially simple way.

Finding a check matrix

Before we can construct Hamming codes, we need to discuss check matrices further and

prove a result (the Distance Theorem) which will allow us to find the minimum distance of

a linear code from its check matrix.

The following result allows us to find a generator matrix of C⊥, assuming that C has a

generator matrix in standard form.

Theorem 7.1: a check matrix construction

Assume that C has a k × n generator matrix G = [Ik |A] in standard form. Then

the dual code C⊥ has generator matrix

H = [−AT | In−k].

Proof. H has n−k rows which are linearly independent (due to In−k present). It is enough

to show that each row r of H is a codevector of C⊥: indeed, we have n − k linearly

independent vectors in C⊥, and n− k is the dimension of C⊥ by Theorem 5.1, so a linearly

independent set of n− k vectors must be a basis of C⊥.

By Theorem 5.1, it is enough to show that rGT = 0. We will show this at once for all rows

67

ch7.html

Hamming codes 68

of H, by proving that HGT is the zero matrix. Indeed,

[−AT | In−k]

[
Ik
−−−
AT

]
= −AT Ik + In−kA

T = −AT +AT = 0.

How can one find a check matrix of C if C has no generator matrix in standard form? We

address this question below.

Linearly equivalent codes

Definition: linearly equivalent codes

Two linear codes C,C ′ ⊆ Fn
q are linearly equivalent, if C ′ can be obtained from C

by a sequence of linear transformations of the following types:

(C1) choose indices i, j; in every codeword, swap symbols xi and xj ;

(C2) choose index i and non-zero λ ∈ Fq; in every codeword, multiply xi by λ.

Exercise. Linearly equivalent codes have the same length, dimension and weight. They

have the same weight enumerator. (Reason: (C1) and (C2) do not change the weight of

any vector.)

Fact: known from linear algebra

Every generator matrix can be brought into the standard form by using row operations

(R1), (R2), (R3) considered above and column operations (C1).

Reason: any matrix can be brought to reduced row echelon form, RREF, by (R1)–(R3); a

generator matrix has linearly independent rows so the RREF won’t have zero rows and will

have a leading entry 1 in each of the k rows; the k columns which contain the leading entries

are columns of the identity matrix of size k; use (C1) to move all these columns to the left.

Conclusion: we can always find a generator matrix in standard form for a linearly equivalent

code.

The Distance Theorem

We already know how to read the length and the dimension of a linear code C off a check

matrix H of C:

� the number of columns of H is the length of C;

� the number of columns minus the number of rows of H is the dimension of C.

Hamming codes 69

The following theorem tells us how to determine the minimum distance of C using H.

Theorem 7.2: Distance Theorem for linear codes

Let C ⊆ Fn
q be a linear code with check matrix H. Then d(C) = d if and only if

every set of d − 1 columns of H is linearly independent and some set of d columns

of H is linearly dependent.

Proof. Let e be the size of a smallest linearly dependent subset of the set {h1, . . . , hn} of
columns of H. The theorem claims that e = d(C). Note that e is the minimum positive

number of non-zero coefficients xi in the linear combination

x1h1 + x2h2 + . . .+ xnhn = 0,

i.e., the minimum weight of non-zero x = (x1, . . . , xn) such that xHT = 0. By Theorem 5.1,

such vectors x are exactly the codevectors of C, so e = w(C) = d(C) as claimed.

Example: calculate d(C) using the Distance Theorem

Use the Distance Theorem to find the minimum distance of the ternary linear code

with check matrix H =

[
0 1 2 1

2 0 1 1

]
.

Solution. Step 1. H has no zero columns. Hence every set of 1 column is linearly indepen-

dent (a one-element set is linearly dependent iff that element is zero). So d ≥ 2.

Step 2. Any two columns of H are linearly independent, because no two columns are

proportional to each other. So d ≥ 3.

Step 3. There are three linearly dependent columns in H: for example, columns 1, 2 and 3

form linear combination

[
0

2

]
+

[
1

0

]
+

[
2

1

]
= 0. Therefore, d = 3.

Hamming codes: the construction

Definition: line, representative vector, projective space

A line is a 1-dimensional subspace of the vector space Fn
q .

A representative vector of a line is a non-zero vector u from that line. The line is

then given by {λu | λ ∈ Fq}.
The projective space Pn−1(Fq) is the set of all lines in Fn

q .

Hamming codes 70

Remark: the terminology comes from euclidean geometry — in the euclidean plane, the set

of all vectors proportional to a given non-zero vector is a straight line through the origin.

Projective spaces over the field R of real numbers are well-studied geometric objects.

For example, P1(R) — the set of all lines through the origin in the euclidean plane — can

be thought of as the unit circle with antipodes identified. We are working over a finite field

Fq where these notions are less intuitive.

Definition: Hamming codes

Let r ≥ 2 be given. We let Ham(r, q) denote an Fq-linear code whose check

matrix has columns which are representatives of the lines in Pr−1(Fq), exactly one

representative vector from each line.

Remark: Ham(r, q) is not one code but a class of linearly equivalent codes

Ham(r, q) is defined up to a linear equivalence. Indeed, we can:

� multiply a column by non-zero λ to get another representative of the same line;

� put columns in any order.

This means that Ham(r, q) is not just one code but a class of linearly equivalent codes.

We will therefore say “a Ham(r, q) code” to mean any of the linearly equivalent codes.

Let us see how the construction works in historically the first example of a Hamming code.

Example: Ham(3, 2)

Construct a parity check matrix for a binary Hamming code Ham(3, 2). Then find a

generator matrix in standard form for Ham(3, 2).

Solution: we need to take one non-zero column from each line in F3
2. For binary vectors, a

line {λu | λ ∈ F2} consists only of two points, 0 and u. This means that a check matrix for

a binary Hamming code consists of all non-zero binary columns or the required size.

Start filling in the check matrix by putting the identity columns at the end (this is convenient

for finding a generator matrix). In total, there are 7 non-zero binary vectors of size 3:

H =

 1 1 1 0 1 0 0

1 1 0 1 0 1 0

1 0 1 1 0 0 1



Hamming codes 71

From this H, we can reconstruct the generator matrix G = [Ik | A] by Theorem 7.1:

G =


1 0 0 0 1 1 1

0 1 0 0 1 1 0

0 0 1 0 1 0 1

0 0 0 1 0 1 1


This is, up to linear equivalence, the generator matrix of the original code of R. Hamming.

Historical remark. Despite their name, the q-ary Hamming codes for q > 2 were not

invented by Hamming. Richard Hamming told Claude Shannon (who he shared an office

with at Bell Labs) about his binary [7, 4, 3]-code, and Shannon mentioned it in his paper of

1948. That paper was read by Marcel J. E. Golay (1902–1989), a Swiss-born American

mathematician and electronics engineer, who then suggested the Ham(r, q) construction in

his paper published in 1949. Golay went further and constructed two perfect codes which

are not Hamming codes. He asked whether there are any more perfect codes.

We will see the Golay codes, and will learn about an answer to Golay’s question about perfect

codes, later in the course.

Parameters of a Hamming code

We considered an example of a Ham(3, 2) code, which — by looking at its generator matrix

— turns out to be a [7, 4, d]2 code. It is not difficult to see directly that d = 3. By explicitly

computing the Hamming bound, one can show that all [7, 4, 3]2-codes are perfect.

We will now generalise this and show that all Hamming codes are perfect.

Theorem 7.3: properties of Hamming codes

Ham(r, q) is a perfect [n, k, d]q code where n =
qr − 1

q − 1
, k = n− r, d = 3.

Proof. The length n of the code is equal to the number of columns in the check matrix,

which is #Pr−1(Fq), the number of lines in Fr
q.

Observe that two lines intersect only at one point, namely 0. The set Fr
q \ {0} is therefore

a disjoint union of lines. Each line {λu : λ ∈ F} contains q − 1 non-zero points.

So the number of lines in Fr
q can be found as

#(Fr
q \ {0})
q − 1

=
qr − 1

q − 1
.

We have k = dimHam(r, q) = n−r since, by construction, the check matrix H has r rows.

To find d, we use the Distance Theorem for linear codes. Any two columns of H are linearly

independent because they are from different lines in Fr
q. (Two vectors are linearly dependent

only if they are proportional to each other, i.e., belong to the same line.) Therefore, d ≥ 3.

Hamming codes 72

On the other hand, H has columns (a, 0, 0, . . . , 0)T , (0, b, 0, . . . , 0)T and (c, c, 0, . . . , 0)T ,

from three different lines (where a, b, c ∈ Fq \ {0}). These columns are linearly dependent:

a−1


a

0
...

0

+ b−1


0

b
...

0

− c−1


c

c
...

0

 = 0.

So d = 3 by the Distance Theorem.

It remains to show that Ham(r, q) is perfect. We calculate t = [(d − 1)/2] = [2/2] = 1.

The Hamming bound (in logarithmic form) then says

k ≤ n− logq

((n
0

)
+

(
n

1

)
(q − 1)

)
= n− logq (1 + n(q − 1)) .

By the already proved formulae for n and k we have n(q−1) = qr−1 and k = n−r. Hence

the bound is n− r ≤ n− logq(q
r) = n− r — attained. Thus, Ham(r, q) is perfect.

Remark: (qr − 1)/(q − 1) is an integer

The proof shows that the fraction
qr − 1

q − 1
is an integer. In fact, this can be seen for

all integers q, r > 1 by a formula for summing a geometric progression,
qr − 1

q − 1
=

qr−1 + qr−2 + · · ·+ q + 1; the right-hand side is obviously an integer.

Decoding a Hamming code

Algorithm 7.4: decoding algorithm for a Hamming code

Let a Hamming code be given by its check matrix H. Suppose a vector y is received.

� Calculate S(y) = yHT . If S(y) = 0, DECODE(y) = y.

� Otherwise, S(y) = λ × some column of H. Let this be the ith column of H.

� Subtract λ from the ith position in y. The result is the codevector DECODE(y).

Proof of validity of the algorithm. We prove that the algorithm outputs the nearest neigh-

bour of y in the code C. This is clear if S(y) = yHT = 0: by Proposition 5.2 y is a

codevector, and so its own nearest neighbour in C. Hence it is correct to decode y to itself.

If yHT ̸= 0, the line in Fr
q which contains yHT has a representative column in H — say,

hi. As yH
T lies on the line spanned by hi, we must have yHT = λhi for some λ ∈ Fq.

Hamming codes 73

Note that λhi equals (λei)H
T where ei is the unit vector with symbol 1 in position i and

zeros elsewhere. It follows that

(y − λei)H
T = λhi − λhi = 0,

hence y− λei is a codevector. Finally, since d(y, y− λei) = 1, and no codevector can be at

distance less than 1 from y, we conclude that y−λei is the nearest neighbour of y in C.

Remark: properties of a Hamming decoder

The Algorithm and the proof above imply:

� Every coset leader of Ham(r, q) is 0 or λei, i.e., a vector of weight 0 or 1.

� The decoder changes at most one symbol in the received vector.

Note that the fact that every coset leader is of weight ≤ 1 also follows, in a different way,

from Exercise 4.3.

For Ham(3, 2), a clever ordering of columns in the parity check matrix can make the decoding

algorithm especially elegant:

Example: special check matrix for Ham(3, 2)

Construct a decoder for the Ham(3, 2) code with parity check matrix

H =

0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

 .

Solution. If y ∈ F7
2 is received, yHT is either 0 or one of the columns of H. Now note

that, by Algorithm 7.4,

� if yHT = 001, the decoder must subtract 1 from the first bit in y, because 001 is the

first column of H;

� if yHT = 010, the decoder must subtract 1 from the second bit in y, because 010 is

the second column of H;

and so on. Subtracting 1 from a bit in F2 is the same as “flipping” the bit, i.e., replacing 0

by 1 and 1 by 0.

Thus, to decode the received vector y, we calculate the syndrome yHT . If this is 000,

output y, otherwise read the syndrome yHT as the binary representation of a number

i ∈ {1, 2, . . . , 7} and decode by flipping the ith bit in y.

Week 7

Exercises (answers at end)

Version 2023-11-07. To accessible online version of these exercises

Notation: let H7 denote a Ham(3, 2) code. It is a [7, 4, 3]2 linear code.

Exercise 7.1. Construct a generator matrix for H7. Hence write down all the codevectors

of H7 and find the weight enumerator WH7(x, y).

Exercise 7.2. (a) If v = (x1, x2, . . . , xn) is a binary vector, we extend v to obtain the vector

v̂ = (x1, . . . , xn, xn+1) where xn+1 = x1 + . . .+ xn in F2. That is, a vector is extended by

appending one bit so that the resulting vector has even weight.

If C is a binary linear code, we define the extended code C as {ĉ : c ∈ C}. The extended

H7 is denoted H8.

(a) By looking at WH7 , show that the weight enumerator of the extended Hamming code is

WH8(x, y) = x8 + 14x4y4 + y8. Determine the length, dimension and weight of H8, state

how many bit errors per codeword can H8 detect and correct.

(b) Show: if u, v ∈ Fn
2 are such that w(u), w(v), w(u+ v) are divisible by 4, then u · v = 0.

(c) Deduce from (a) and (b) that H8 is a self-dual code.

(d) Write down a generator matrix Ĝ for H8 and use it to prove directly that H8 is self-dual.

74

ch7ex.html

Week 7

Exercises — solutions

Version 2023-11-07. To accessible online version of these exercises

Notation: let H7 denote a Ham(3, 2) code. It is a [7, 4, 3]2 linear code.

Exercise 7.1. Construct a generator matrix for H7. Hence write down all the codevectors

of H7 and find the weight enumerator WH7(x, y).

Answer to E7.1. Let us use the following parity check matrix: H =

1 1 1 0 1 0 0

1 1 0 1 0 1 0

1 0 1 1 0 0 1

.
(Any other check matrix for a Ham(3, 2) code is obtained from this one by permuting

columns.) This allows us to construct the corresponding generator matrix for H7:

G =


1 0 0 0 1 1 1

0 1 0 0 1 1 0

0 0 1 0 1 0 1

0 0 0 1 0 1 1

, hence the code consists of [0000]G = 0000000;

[0001]G = 0001011, [0010]G = 0010101, [0011]G = 0011110,

[0100]G = 0100110, [0101]G = 0101101, [0110]G = 0110011, [0111]G = 0111000,

[1000]G = 1000111, [1001]G = 1001100, [1010]G = 1010010, [1011]G = 1011001,

[1100]G = 1100001, [1101]G = 1101010, [1110]G = 1110100,

[1111]G = 1111111. One codevector has weight 0, seven have weight 3, seven have weight

4 and one has weight 7. Hence the weight enumerator is

WH7(x, y) = x7 + 7x4y3 + 7x3y4 + y7.

Exercise 7.2. (a) If v = (x1, x2, . . . , xn) is a binary vector, we extend v to obtain the vector

v̂ = (x1, . . . , xn, xn+1) where xn+1 = x1 + . . .+ xn in F2. That is, a vector is extended by

appending one bit so that the resulting vector has even weight.

75

ch7ex.html

Exercises — solutions 76

If C is a binary linear code, we define the extended code C as {ĉ : c ∈ C}. The extended

H7 is denoted H8.

(a) By looking at WH7 , show that the weight enumerator of the extended Hamming code is

WH8(x, y) = x8 + 14x4y4 + y8. Determine the length, dimension and weight of H8, state

how many bit errors per codeword can H8 detect and correct.

(b) Show: if u, v ∈ Fn
2 are such that w(u), w(v), w(u+ v) are divisible by 4, then u · v = 0.

(c) Deduce from (a) and (b) that H8 is a self-dual code.

(d) Write down a generator matrix Ĝ for H8 and use it to prove directly that H8 is self-dual.

Answer to E7.2. (a) By the extended code construction, H8 has length 8 and cardinality

equal to #H7, hence dimension 4.

If x ∈ H is a codevector of weight 3 or 4 (there are 14 such vectors in H), x̂ will be of

weight 4. Hence H8 contains 0, fourteen vectors of weight 4 and 11111111 of weight 8. So

the weight enumerator is as claimed.

(b) Call the number of positions i where ui = vi = 1 the overlap of u and v. Note that in

u + v, the number of 1s is exactly w(u) + w(v) − 2 × overlap of u and v. The weight of

u + v must be divisible by 4, so the overlap is even. But then, u · v is the sum of an even

number of 1s, so u · v = 0.

(c) If x and y are codevectors of H8, then x+ y is also a codevector of H8, and (a) tells us

that the weights of all codevectors are divisible by 4. Hence by (b) x · y = 0. This means

that H8 ⊆ H⊥
8 . The dimension of both codes is 4, hence they are equal.

(d) Appending a parity check bit to each row of G above, we obtain a generator matrix Ĝ

for H8: Ĝ =


1 0 0 0 1 1 1 0

0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1

. A direct calculation shows that ĜĜT is zero. So

H8 is self-orthogonal and, given that 2k = n (2× 4 = 8), is self-dual.

Week 8

The MacWilliams identity. The

Average Weight Equation. Plotkin

bound. Simplex codes

Version 2023-11-07. To accessible online version of this chapter

Synopsis. Remarkably, the weights of codevectors of the dual code C⊥ are completely deter-

mined by weights of codevectors of C. This was proved by Florence Jessie MacWilliams

(1917–1990), an English-born American mathematician who spent most of her career at

Bell Labs and Harvard in the United States. We state the general case of the MacWilliams

identity. We give a proof (not examinable) for codes over Fp with prime p, and apply the

identity to deduce a formula called the Average Weight Equation, as well as the Plotkin

bound. We can use the MacWilliams identity to study Hamming codes by analysing their

dual codes, called simplex codes.

Theorem 8.1: the MacWilliams identity

If C is a q-ary linear code, WC⊥(x, y) =
1

#C
WC(x+ (q − 1)y, x− y).

Proof for prime q = p. This proof is not examinable. Since p is a prime, the field Fp consists

of elements 0, 1, . . . , p− 1 (residues of integers modulo p). Being able to explicitly list the

field elements — not possible for a general prime power q — simplifies the proof.

Let C ⊆ Fn
p be linear. We fix the complex number ω = e2πi/p, a primitive pth root of 1. We

have ωp = 1 and ω, ω2, . . . , ωp−1 ̸= 1. We can write ωa if a ∈ Fp — this complex number

is well-defined, even though a is only defined modulo p.

Given c ∈ C, v ∈ Fn
p , denote

Φ(c, v) = ωc·vxn−w(v)yw(v).

77

ch8.html

MacWilliams identity, average weight equation, Plotkin bound, simplex codes 78

We will compute
∑

c∈C, v∈Fn
p

Φ(c, v) in two different ways.

Way 1 . If v ∈ C⊥, then c · v = 0 for all c ∈ C, so Φ(c, v) = xn−w(v)yw(v).

If, however, v /∈ C⊥, there is a codevector d ∈ C such that d · v = a ̸= 0 in Fp. Observe

that Φ(d+ c, v) = ωd·vΦ(c, v) = ωaΦ(c, v). We know that d+ C = C, so∑
c∈C

Φ(c, v) =
∑
c∈C

Φ(d+ c, v) = ωa
∑
c∈C

Φ(c, v) =⇒ (ωa − 1)
∑
c∈C

Φ(c, v) = 0.

Since ωa ̸= 1, we have ∑
c∈C

Φ(c, v) = 0 for v /∈ C⊥.

We conclude that∑
c∈C, v∈Fn

p

Φ(c, v) =
∑

c∈C, v∈C⊥

Φ(c, v) = #C
∑
v∈C⊥

xn−w(v)yw(v) = (#C)WC⊥(x, y).

Way 2 . If v is a symbol, v ∈ Fp, we introduce the “weight of v”, w(v), as follows:

w(v) = 1 if v ̸= 0 and w(v) = 0 if v = 0. Surely, for a vector v ∈ Fn
p we have w(v) =

w(v1) + · · ·+ w(vn). We then rewrite

Φ(c, v) = ωc1v1+···+cnvnx1−w(v1)yw(v1) . . . x1−w(vn)yw(vn)

= ωc1v1x1−w(v1)yw(v1) . . . ωcnvnx1−w(vn)yw(vn).

We now sum over v ∈ Fn
p first: each coordinate of v runs over Fp = {0, 1, . . . , p− 1}. So,

for a fixed c ∈ C,

∑
v∈Fn

p

Φ(c, v) =

p−1∑
v1=0

· · ·
p−1∑
vn=0

Φ(c, v)

=

p−1∑
v1=0

ωc1v1x1−w(v1)yw(v1) · · ·
p−1∑
vn=0

ωcnvnx1−w(vn)yw(vn). (*)

Let us analyse the first factor in the product on the right-hand side of (*):

p−1∑
v1=0

ωc1v1x1−w(v1)yw(v1) = x+
(p−1∑
v1=1

ωc1v1
)
y.

If c1 = 0, the coefficient of y is clearly 1 + 1 + · · · + 1 = p − 1, whereas if c1 ̸= 0, the

coefficient of y is the sum of a geometric progression

p−1∑
v1=1

ωc1v1 = −1 +
p−1∑
v1=0

ωc1v1 = −1 + 1− (ωc1)p

1− ωc1
= −1 + 0

1− ωc1
= −1

MacWilliams identity, average weight equation, Plotkin bound, simplex codes 79

since (ωc1)p = 1. Hence the first factor on the right-hand side of (*) is{
x+ (p− 1)y, if c1 = 0,

x− y, if c1 ̸= 0.

The same applies to the second, ..., nth factor in (*), hence (*) has w(c) factors equal

to x − y and n − w(c) factors equal to x + (p − 1)y. In other words, (*) evaluates as

(x+ (p− 1)y)n−w(c)(x− y)w(c). Therefore,∑
c∈C

∑
v∈Fn

p

Φ(c, v) =
∑
c∈C

(x+ (p− 1)y)n−w(c)(x− y)w(c) = WC(x+ (p− 1)y, x− y).

Comparing Way 2 and Way 1, we conclude that WC(x+(p−1)y, x−y) = (#C)WC⊥(x, y).

This is the MacWilliams identity for q = p.

Simple examples where the MacWilliams identity is used

Let us obtain a short formula for the weight enumerator of the trivial code Fn
q by writing Fn

q

as the dual code of the null code Null = {0}. Of course, every vector in Fn
q is orthogonal

to 0 which explains why Fn
q = Null⊥.

Clearly, #Null = 1 and WNull (x, y) = xn because N has only one codevector, which is of

weight 0. Now use the MacWilliams identity:

Example: the weight enumerator of the trivial code Fn
q

WFn
q
(x, y) = 1

#NullWNull (x+ (q − 1)y, x− y) = (x+ (q − 1)y)n.

We can obtain the same formula for the weight enumerator of the trivial code Fn
q without

the use of MacWilliams identity, see earlier exercises.

The binary (q = 2) MacWilliams identity allows us to immediately obtain a short formula

for the weight enumerator of the even weight code En. Indeed, En = Rep(n,F2)
⊥, and

the binary repetition code has weight enumerator WRep(n,F2)(x, y) = xn + yn (see example

sheets). Also, #Rep(n,F2) = 2. Hence

Example: the weight enumerator of En

WEn(x, y) =
1

#Rep(n,F2)
WRep(n,F2)(x+ y, x− y) = 1

2((x+ y)n + (x− y)n).

Using the binomial formula, we can expand this sum as xn +
(
n
2

)
xn−2y2 +

(
n
4

)
xn−4y4 + . . .

In particular, this proves that w(En) = d(En) = 2 as the lowest positive power of x in this

polynomial is two.

MacWilliams identity, average weight equation, Plotkin bound, simplex codes 80

The Average Weight Equation for linear codes

The proof of the following result involves a surprising use of the MacWilliams identity.

Theorem 8.2: the Average Weight Equation

If C is a q-ary linear code of length n, the average of the weights of all the codevectors

of C is (n−z)(1−q−1), where z is the number of zero columns in a generator matrix

of C.

Proof. We count codevectors of weight 1 in the dual code C⊥. By Theorem 5.1, v ∈ C⊥ iff

vGT = 0 where G is a generator matrix of C. If v is of weight 1 with vi ̸= 0, then the ith

column of G is zero. The non-zero vi can be chosen in q − 1 ways, so each zero column of

G gives rise to q− 1 vectors of weight 1 in C⊥, and there are z(q− 1) such vectors in total.

We must get the same number as the coefficient of xn−1y in the weight enumerator

WC⊥(x, y), which by the MacWilliams identity equals

1

#C
WC(x+ (q − 1)y, x− y) =

1

#C

∑
v∈C

(x+ (q − 1)y)n−w(v)(x− y)w(v). (8.1)

We put x = 1 and work out the coefficient of y. By the Binomial Theorem,

(1 + (q − 1)y)n−w(v) = 1 + (n− w(v))(q − 1)y + higher powers of y,

(1− y)w(v) = 1− w(v)y + higher powers of y,

and so the coefficient of y in the product of these two expressions is

(n− w(v))(q − 1)− w(v) = n(q − 1)− qw(v).

Summing over v ∈ C then dividing by #C gives the coefficient of y in (8.1) as n(q − 1)−
q 1
#C

∑
v∈C w(v). We thus get the equation

z(q − 1) = n(q − 1)− q
1

#C

∑
v∈C

w(v),

hence the average of all weights, 1
#C

∑
v∈C w(v), is (n− z) q−1

q as claimed.

A simple example where we verify the Average Weight Equation

The easiest case where we can explicitly verify the Average Weight Equation is C =

Rep(n,Fq), the q-ary repetition code of length n. The code consists of the zero vector

and q − 1 vectors of the form aa . . . a where a ∈ Fq \ {0}, of weight n. The total number

of codevectors is q. The one-row generator matrix
[
1 1 . . . 1

]
of the code does not

contain a zero column, so z = 0. We arrive at the following

MacWilliams identity, average weight equation, Plotkin bound, simplex codes 81

Example: average weight of a codevector of Rep(n,Fq)

The average weight of a codevector of Rep(n,Fq) is

1× 0 + (q − 1)× n

q
= n(1− q−1),

which agrees with the Average Weight Equation.

Exercise. Verify the Average Weight Equation by explicit calculation for the trivial code Fn
q .

Simplex codes

What is the weight enumerator of Ham(r, q)? This question can be answered using the

MacWilliams identity. In the particular case q = 2, the answer can be explored further to

give the probability Pundetect for the binary Hamming code (we do not pursue this here).

Recall from the previous chapter that the Hamming codes are defined via an interesting

check matrix whose columns form a maximal set of columns where no two columns are

proportional. What is the code generated by this matrix? We analyse these codes in the

rest of this chapter.

Definition: simplex code

A simplex code Σ(r, q) is defined as Ham(r, q)⊥.

Remark: recall that a regular simplex in an n-dimensional euclidean space Rn is a convex

polytope whose vertices are n+1 points with the same distance between each pair of points.

Thus, a 2-dimensional regular simplex is an equilateral triangle, and a 3-dimensional regular

simplex is a regular tetrahedron. The following result motivates our terminology.

Theorem 8.3: properties of a simplex code

The simplex code Σ(r, q) has length n = (qr − 1)/(q − 1) and dimension r. The

Hamming distance between each pair of codevectors is qr−1.

Proof. The length and dimension of Σ(r, q) = Ham(r, q)⊥ are dictated by the parameters

of the Hamming code, see Theorem 7.3. It remains to calculate the distances.

Since Σ(r, q) is linear, it suffices to show that every non-zero v ∈ Σ(r, q) has weight qr−1.

By linear algebra, there is a basis of Σ(r, q) which contains v, hence v is the first row of

some generator matrix H ′ of Σ(r, q).

MacWilliams identity, average weight equation, Plotkin bound, simplex codes 82

Since H ′ is a check matrix for Ham(r, q) and d(Ham(r, q)) = 3, by Distance Theorem 7.2

no two columns of H ′ are proportional, hence the columns of H ′ represent distinct lines in

Fr
q. Therefore, the weight of v (the first row of H ′) is the number of lines where the first

entry of a representative vector is not zero.

The total number of possible columns of size r with non-zero top entry is (q−1) (choices for

the top entry) ×qr−1 (choices for the other entries which are unrestricted). But (q−1) non-

zero columns form a line, hence the number of required lines is (q− 1)qr−1/(q− 1) = qr−1.

Hence w(v) = qr−1 as claimed.

The weight enumerator of a binary Hamming code

By Theorem 8.3, the weight enumerator of the simplex code Σ(r, q) is

WΣ(r,q)(x, y) = xn + (qr − 1)xn−qr−1
yq

r−1

where n =
qr − 1

q − 1
. This formula reflects the fact that there is one codevector of weight 0

and qr − 1 codevectors of weight qr−1 in Σ(r, q).

The weight enumerator ofHam(r, q) = Σ(r, q)⊥ can then be obtained using the MacWilliams

identity. We do this for a binary Hamming code.

Proposition 8.4: the weight enumerator of Ham(r, 2)

WHam(r,2)(x, y) =
1

n+1

(
(x+ y)n + n(x+ y)

n−1
2 (x− y)

n+1
2

)
where n = 2r − 1.

Proof. The MacWilliams identity, Theorem 8.1, in the case of binary codes givesWC⊥(x, y) =
1

#CWC(x + y, x − y). We put C = Σ(r, 2) so that C⊥ = Ham(r, 2). By Theorem 7.3,

n = 2r − 1 so that #C = 2r = n+1 and the weight of each non-zero codevector in Σ(r, 2)

is qr−1 = 2r−1 = n+1
2 . We also have n− qr−1 = n− n+1

2 = n−1
2 .

Substituting these in the MacWilliams identity, we obtain WHam(r,2) as stated.

Example: weight enumerator of the “original” Hamming code

WHam(3,2) =
1

8

(
(x+ y)7 + 7(x+ y)3(x− y)4

)
= x7 + 7x4y3 + 7x3y4 + y7.

Exercise: explicitly expand the left-hand side in the formula for WHam(3,2).

Exercise: Use Proposition 8.4 to show that every binary Hamming code contains the vector

111 . . . 1 (all bits equal to 1).

MacWilliams identity, average weight equation, Plotkin bound, simplex codes 83

The Plotkin Bound

The Plotkin bound was obtained by Morris Plotkin in 1960 for arbitrary (not necessarily

linear) binary codes. It applies to codes with very large minimum distance: d > n/2 where

n is the length of the code. A proof of the general case of the bound by a direct counting

argument can be found in the literature. We will only prove the statement for linear codes,

which will serve as an example of the power of the MacWilliams identity and its corollary,

the Average Weight Equation. (Historical note: the MacWilliams identity was proved in

1961, i.e., after the Plotkin bound.)

Proposition 8.5: The Plotkin bound for binary linear codes

If C ⊆ Fn
2 is a linear code such that d = d(C) > n/2, then #C ≤ d

d− n/2
.

Proof. Let M = #C. The code C contains the zero vector, 0, and M −1 vectors of weight

at least d. Then the average weight of a codevector of C is at least

1× 0 + (M − 1)× d

M
=
(
1− 1

M

)
d.

So from the Average Weight Equation (where z is the number of zero columns in a generator

matrix of C) we obtain

(n− z)
(
1− 1

2

)
≥
(
1− 1

M

)
d =⇒ n

2
≥
(
1− 1

M

)
d ⇐⇒ n

2d
≥ 1− 1

M

so that 1/M ≥ 1− n/(2d) = (2d− n)/(2d) and M ≤ 2d/(2d− n), as claimed.

Week 8

Exercises (answers at end)

Version 2023-11-09. To accessible online version of these exercises

Notation: H7 denotes a Ham(3, 2) code, WH7(x, y) = x7 + 7x4y3 + 7x3y4 + y7.

Exercise 8.1. If v = (x1, x2, . . . , xn) is a binary vector, we extend v to obtain the vector v̂

= (x1, . . . , xn, xn+1) where xn+1 = x1 + . . . + xn in F2. That is, a vector is extended by

appending one bit so that the resulting vector has even weight.

If C is a binary linear code, we define the extended code C as {ĉ : c ∈ C}. The extended

H7 is denoted H8.

(a) By looking at WH7 , show that the weight enumerator of the extended Hamming code is

WH8(x, y) = x8 + 14x4y4 + y8. Determine the length, dimension and weight of H8, state

how many bit errors per codeword can H8 detect and correct.

(b) Show: if u, v ∈ Fn
2 are such that w(u), w(v), w(u+ v) are divisible by 4, then u · v = 0.

(c) Deduce from (a) and (b) that H8 is a self-dual code.

(d) Write down a generator matrix Ĝ for H8 and use it to prove directly that H8 is self-dual.

Exercise 8.2. Recall: H8 is self-dual with weight enumerator WH8(x, y) = x8+14x4y4+y8.

(a) Let A(x, y) = x(x + y), B(x, y) = (x − y)y and C(x, y) = A − B = x2 + y2. Show

that A(x+ y, x− y) = 2A(x, y). Obtain similar equations for B and C.

(b) Show that WH8 = C4 − 4A2B2.

(c) Deduce that (#H8)
−1WH8(x+ y, x− y) = WH8(x, y).

(Of course, this must be true by the MacWilliams identity, but the point of the exercise is

to prove this algebraically.)

Exercise 8.3 (a construction of the simplex code Σ(3, 2) using the Fano plane). The Fano

plane is the diagram of 7 points and 7 lines, given below. Each line passes through 3 points,

84

ch8ex.html

Exercises (answers at end) 85

and each points lies on 3 lines. For any two points P ̸= Q, there exists exactly one line PQ

which contains both P and Q.

Next to each point P , write a 7-bit word by the following rule. The bits are coloured red,

orange, yellow, green, cyan, blue, violet. The red bit is 1 if P does not lie on the red line,

and 0 if P lies on the red line. Same with the orange, ..., violet bit.

For example, the word written next to the point in the centre of the diagram above is

0010111.

(a) Check that all the seven words are binary vectors of weight 4.

(b) Check that the seven words, together with the zero vector 0000000, form a linear code

in F7
2. To show that the code is closed under addition, prove that the sum of the words P

and Q is the word R which is the third point on the line PQ.

(c) Prove that this linear code is Σ(3, 2).

Week 8

Exercises — solutions

Version 2023-11-09. To accessible online version of these exercises

Notation: H7 denotes a Ham(3, 2) code, WH7(x, y) = x7 + 7x4y3 + 7x3y4 + y7.

Exercise 8.1. If v = (x1, x2, . . . , xn) is a binary vector, we extend v to obtain the vector v̂

= (x1, . . . , xn, xn+1) where xn+1 = x1 + . . . + xn in F2. That is, a vector is extended by

appending one bit so that the resulting vector has even weight.

If C is a binary linear code, we define the extended code C as {ĉ : c ∈ C}. The extended

H7 is denoted H8.

(a) By looking at WH7 , show that the weight enumerator of the extended Hamming code is

WH8(x, y) = x8 + 14x4y4 + y8. Determine the length, dimension and weight of H8, state

how many bit errors per codeword can H8 detect and correct.

(b) Show: if u, v ∈ Fn
2 are such that w(u), w(v), w(u+ v) are divisible by 4, then u · v = 0.

(c) Deduce from (a) and (b) that H8 is a self-dual code.

(d) Write down a generator matrix Ĝ for H8 and use it to prove directly that H8 is self-dual.

Answer to E8.1. (a) By the extended code construction, H8 has length 8 and cardinality

equal to #H7, hence dimension 4.

If x ∈ H7 is a codevector of weight 3 or 4 (there are 14 such vectors in H7), x̂ will be of

weight 4.

Indeed, if x is a vector of weight 3, then the extended vector x̂ will be of weight 4. This is

because 3 is odd and so the appended parity check bit will be 1, hence w(x̂) = w(x)+ 1. If

x is of weight 4 which is even, the appended parity check bit is 0 and so w(x̂) = w(x) = 4.

Thus, the number of vectors of weight 4 in H8 is equal to the total number of vectors of

weight 3 and weight 4 in H7.

86

ch8ex.html

Exercises — solutions 87

Hence H8 contains 0, fourteen vectors of weight 4 and 11111111 of weight 8. So the weight

enumerator is as claimed.

(b) Call the number of positions i where ui = vi = 1 the overlap of u and v. Note that in

u + v, the number of 1s is exactly w(u) + w(v) − 2 × overlap of u and v. The weight of

u + v must be divisible by 4, so the overlap is even. But then, u · v is the sum of an even

number of 1s, so u · v = 0.

(c) If x and y are codevectors of H8, then x+ y is also a codevector of H8, and (a) tells us

that the weights of all codevectors are divisible by 4. Hence by (b) x · y = 0. This means

that H8 ⊆ H⊥
8 . The dimension of both codes is 4, hence they are equal.

(d) Appending a parity check bit to each row of G above, we obtain a generator matrix Ĝ

for H8: Ĝ =


1 0 0 0 1 1 1 0

0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1

. A direct calculation shows that ĜĜT is zero. So

H8 is self-orthogonal and, given that 2k = n (2× 4 = 8), is self-dual.

Exercise 8.2. Recall: H8 is self-dual with weight enumerator WH8(x, y) = x8+14x4y4+y8.

(a) Let A(x, y) = x(x + y), B(x, y) = (x − y)y and C(x, y) = A − B = x2 + y2. Show

that A(x+ y, x− y) = 2A(x, y). Obtain similar equations for B and C.

(b) Show that WH8 = C4 − 4A2B2.

(c) Deduce that (#H8)
−1WH8(x+ y, x− y) = WH8(x, y).

Answer to E8.2. (a) A(x+ y, x− y) = (x+ y)(x+ y+(x− y)) = 2(x+ y)x = 2A(x, y).

Similarly, B(x+ y, x− y) = 2B(x, y), same for C.

(b) Note that AB = xy(x+ y)(x− y) = xy(x2− y2) so 4A2B2 = 4(x6y2− 2x4y4+x2y6).

Subtracting this from C4 = x8 + 4x6y2 + 6x4y4 + 4x2y6 + y8, we get WH8(x, y).

(c) The substitution of (x+ y, x− y) for (x, y) multiplies A, B and C by 2 hence multiplies

C4 − 4A2B2 by 24. Thus, WH8(x+ y, x− y) = 16WH8(x, y). Now note that 16 = #H8.

This approach is due to Andrew M. Gleason who supervised F.J. MacWilliams’ PhD thesis.

Exercise 8.3 (a construction of the simplex code Σ(3, 2) using the Fano plane). The Fano

plane is the diagram of 7 points and 7 lines, given below. Each line passes through 3 points,

and each points lies on 3 lines. For any two points P ̸= Q, there exists exactly one line PQ

which contains both P and Q.

Exercises — solutions 88

Next to each point P , write a 7-bit word by the following rule. The bits are coloured red,

orange, yellow, green, cyan, blue, violet. The red bit is 1 if P does not lie on the red line,

and 0 if P lies on the red line. Same with the orange, ..., violet bit.

For example, the word written next to the point in the centre of the diagram above is

0010111.

(a) Check that all the seven words are binary vectors of weight 4.

(b) Check that the seven words, together with the zero vector 0000000, form a linear code

in F7
2. To show that the code is closed under addition, prove that the sum of the words P

and Q is the word R which is the third point on the line PQ.

(c) Prove that this linear code is Σ(3, 2).

Answer to E8.3.

(a) Each point lies on 3 lines, so each of the seven words will consist of 3 zeros and 7−3 = 4

ones — thus be a vector in F7
2 of weight 4.

(b) Consider the words attached to points P , Q and R on the same line. We need to prove

that P +Q = R, equivalently P +Q+R = 0000000.

Assume without the loss of generality that the line PQR is red. The red bits in P , Q and R

are 0; we have 0+0+0 = 0. Consider any other bit colour, say blue. Exactly one of P , Q,

R lies on the blue line, so for the blue bits we again have the correct equation 1+1+0 = 0.

Thus, P +Q+R is indeed 0000000.

(c) Pick three linearly independent vectors from the code, which means three points not on

the same line: P , Q, R say. Use these three vectors as rows of the generator matrix.

I claim that the resulting matrix G with 3 rows will have 7 distinct non-zero columns.

First of all, no line contains P and Q and R, so there is no column
[
0
0
0

]
in G.

Secondly, the columns which correspond to the lines PQ, QR and PR will be
[
0
0
1

]
,
[
0
1
0

]
and

[
1
0
0

]
in some order. Indeed, each of these lines contains exactly two of the given points

(hence two zeros in the column).

Exercises — solutions 89

There are three further lines which contain exactly one of the P , Q, R, resulting in the

columns
[
0
1
1

]
,
[
1
0
1

]
and

[
1
1
0

]
, and finally there is a line which contains none of P , Q, R,

resulting in the column
[
1
1
1

]
.

A matrix which consists of 7 pairwise distinct non-zero binary columns of size 3 is, by

definition, a generator matrix for Σ(3, 2).

Explicitly, taking the vectors which correspond to the three points in the corners of the above

diagram, we obtain the generator matrix0 1 0 1 1 1 0

1 0 0 1 0 1 1

1 1 1 0 0 1 0

 ,

which evidently has 7 distinct non-zero columns of size 3.

Week 9

Cyclic codes

Version 2023-11-12. To accessible online version of this chapter

Synopsis. Cyclic codes form a subclass of linear codes. Cyclic codes are easy to define, but

to reveal their advantages, one needs to study them using polynomials. We identify Fn
q with

the space Rn of polynomials in Fq[x] of degree less than n, so that a linear code of length

n becomes a subspace of Rn. We prove that cyclic codes are subspaces of very special

form: a cyclic code C consists of all multiples, in Rn, of its generator polynomial g(x). We

also define a check polynomial of C. We can classify cyclic codes of length n by listing all

monic divisors of the polynomial xn − 1 in Fq[x]. Theory and applications of cyclic codes

are underpinned by the Division Theorem for polynomials and the long division algorithm,

which we review here.

Definition: cyclic shift, cyclic code

For a vector a = (a0, a1, . . . , an−1) ∈ Fn
q , we denote s(a) = (an−1, a0, . . . , an−2) and

call the vector s(a) the cyclic shift of a.

A cyclic code in Fn
q is a linear code C such that ∀a ∈ C, s(a) ∈ C.

Equivalently, a cyclic code is a linear code C such that s(C) = C.

Remark: We can iterate the cyclic shift, so if a cyclic code C contains (a0, a1, . . . , an−1),

then C also contains the vectors (an−2, an−1, a0, . . . , an−3), . . . , (a1, . . . , an−1, a0).

Vectors as polynomials

To study cyclic codes, we will identify vectors of length n with polynomials of degree

< n with coefficients in the field Fq:

a = (a0, a1, . . . , an−1) 7→ a(x) = a0 + a1x+ . . .+ an−1x
n−1 ∈ Fq[x]

Here Fq[x] is the ring of polynomials in one variable, x, with coefficients in Fq.

90

ch9.html

Cyclic codes 91

Notation: the polynomial a(x) and the vector a

If n is given and a(x) is a polynomial of degree less than n, a (same letter, underlined)

will denote the vector which corresponds to a(x) in Fn
q .

Example: E3 is a cyclic code

Show that the binary even weight code E3 = {000, 110, 011, 101} ⊆ F3
2 is cyclic. List

the code polynomials of E3.

Solution. We know that E3 is a linear code. It is closed under the cyclic shift: 000 is

invariant under the cyclic shift, and 110
s−→ 011

s−→ 101. Hence E3 is a cyclic code:

Codevector Code polynomial Remark

000 0

110 1 + x

011 x+ x2 = x(1 + x)

101 1 + x2 = (1 + x)(1 + x)

We will soon explain the notable fact that all code polynomials of E3 are multiples of 1+x.

The Division Theorem for polynomials

In general we cannot divide f(x) by g(x) in Fq[x] and expect to get a polynomial. However,

just as the ring Z of integers, the ring Fq[x] has an extra operation called division with

remainder, as per the following

Theorem 9.1: Division Theorem for polynomials

For all f(x) ∈ Fq[x], g(x) ∈ Fq[x] \ {0}, there exist unique Q(x), r(x) ∈ Fq[x] with

f(x) = g(x)Q(x) + r(x) and deg r(x) < deg g(x)

(possibly r(x) = 0). In this case the polynomial Q(x) is the quotient, and r(x) the

remainder, of f(x) when divided by g(x).

We will not prove the Division Theorem but we will note and use the practical algorithm for

finding the quotient and the remainder, known as long division of polynomials.

Example: long division of polynomials

Divide x5 + 1 by x2 + x+ 1 in F2[x], finding the quotient and the remainder.

Cyclic codes 92

Solution.
x3 + x2 +1 (quotient)

x2 + x+ 1 x5 +1 (dividend)
−
x5 + x4 + x3

x4 + x3 +1
−
x4 + x3 + x2

x2 +1
−
x2 + x+1

x (remainder)

Hence x5 + 1 = (x2 + x+ 1)Q(x) + r(x) in F2[x], with Q(x) = x3 + x2 + 1 and r(x) = x.

This example shows long division of polynomials over F2. Division by a fixed binary polyno-

mial is widely implemented in electronic circuits at hardware level, by means of shift feedback

registers. We will soon see why such implementations are needed.

The generator polynomial of a cyclic code

In what follows, Rn denotes the space of polynomials of degree less than n.

Definition: generator polynomial

A generator polynomial of a cyclic code C ⊆ Rn, C ̸= {0} is a monic polynomial

of least degree in C.

By convention, the generator polynomial of the null code {0} ⊆ Rn is xn − 1.

Recall that a polynomial g(x) is monic if the coefficient of the highest power of x in g(x)

is 1.

Lemma 9.2: existence and uniqueness of a generator polynomial

Every cyclic code C has a unique generator polynomial g(x).

Proof. If C = {0}, by definition xn−1 is the unique generator polynomial. Assume C ̸= {0}.

Existence: take g(x) ∈ C to be a non-zero polynomial of lowest degree in C. Make g(x)

monic by dividing it by its leading coefficient. This does not change the degree, so we now

have a monic polynomial of least degree in C. Existence is proved.

Uniqueness: let g1(x) ∈ C be another generator polynomial, then by definition g1(x) is

monic and has the same degree as g(x). So f(x) = g1(x) − g(x) has degree less than

deg g(x) (because the leading term xdeg g cancels due to subtraction). Note that f(x) ∈ C

because C is linear. If f(x) ̸= 0, divide f(x) by its leading coefficient and obtain a monic

Cyclic codes 93

polynomial, again in C, of degree less than deg g. This contradicts the choice of g(x).

Hence f(x) must be 0, and g1(x) = g(x). Uniqueness is proved.

Theorem 9.3: properties of the generator polynomial

Let C ⊆ Rn be a cyclic code with generator polynomial g(x). Write deg g = n− k.

Then

1. C = {u(x)g(x) : u(x) ∈ Rk}, i.e., the code polynomials of C are all possible

multiples of g(x) of degree less than n.

2. g(x) is a monic factor of the polynomial xn − 1 in Fq[x].

Proof. Both claims are trivially true when C = {0} and g(x) = xn−1, so assume C ̸= {0}.

1. Observe that, writing elements of C as vectors, we have

g = (g0, g1, . . . , gn−k, 0, 0, . . . , 0︸ ︷︷ ︸
k−1 zeros

)

and, as long as i ≤ k − 1,

xig = (0, . . . , 0︸ ︷︷ ︸
i zeros

, g0, g1, . . . , gn−k, 0, . . . , 0︸ ︷︷ ︸
k−1−i zeros

).

That is, xig is obtained from g by applying the cyclic shift i times. Since C is cyclic, this

means that xg(x), . . . , xk−1g(x) ∈ C.

Now, every polynomial u(x) ∈ Rk — that is, a polynomial of degree less than k — is

written as u0 + u1x + · · · + uk−1x
k−1 for some u0, . . . , uk−1 ∈ Fq. Hence u(x)g(x) is a

linear combination of the polynomials g(x), xg(x), . . . , xk−1g(x) which are in C, and, as C

is linear, u(x)g(x) ∈ C. We proved that C ⊇ {u(x)g(x) : u(x) ∈ Rk}.

Let us show that C ⊆ {u(x)g(x) : u(x) ∈ Rk}. Take f(x) ∈ C and apply the Division

Theorem for polynomials to write r(x) = f(x) − g(x)Q(x) where deg r(x) < deg g(x).

We will get degQ = deg f − deg g < n − (n − k) = k and so, by what has already been

proved, g(x)Q(x) ∈ C. Then by linearity r(x) ∈ C. We have seen already that there

cannot be a non-zero polynomial in C of degree strictly less than deg g, so r(x) = 0 and

f(x) = g(x)Q(x) is a multiple of g(x), as claimed. Part 1 of the Theorem is proved.

2. Continuing from the above, observe that

s(xk−1g) = (gn−k, 0, . . . , 0︸ ︷︷ ︸
k−1 zeros

, g0, g1, . . . , gn−k−1)

Cyclic codes 94

where s is the cyclic shift. Hence the vector s(xk−1g) corresponds to the polynomial

gn−k + xk(g0 + g1x+ · · ·+ gn−k−1x
n−k−1)

which can be written as

gn−k + xkg(x)− gn−kx
n = xkg(x)− (xn − 1),

as gn−k = 1 given that g(x) is monic. Since C is cyclic, s(xk−1g) ∈ C and so xkg(x) −
(xn − 1) ∈ C. Then by Part 1, xkg(x) − (xn − 1) = u(x)g(x) for some polynomial u(x),

and so xn − 1 = (xk − u(x))g(x) which shows that g(x) is indeed a factor of xn − 1.

Example: the generator polynomial of E3

The code E3 as a subspace of F2[x] consists of polynomials 0, 1+x, x+x2 = x(1+x)

and 1 + x2 = (1 + x)2. The generator polynonial of E3 is g(x) = 1 + x of degree 1.

As we have already noted, all the code polynomials of E3 are multiples of 1 + x.

Error detection by a cyclic code

Theorem 9.3 means that if C is a cyclic code, there is no need to store a check matrix

for error detection. To determine whether the received vector y is a codevector, divide the

polynomial y(x) by the generator polynomial g(x); the remainder is 0, if and only if y ∈ C.

This is how error detection is implemented in practice for binary cyclic codes (e.g., in Ethernet

networks). Long division by g(x) is implemented by circuitry.

Nevertheless, for theoretical purposes we would like to have generator and check matrices

for a cyclic code with a given generator polynomial.

The check polynomial

Definition: check polynomial

Let g(x) be the generator polynomial of a cyclic code C ⊆ Fn
q . The polynomial h(x)

defined by g(x)h(x) = xn − 1 is the check polynomial of C.

Note that if deg g(x) = n− k, then deg h(x) = k, and h is monic.

Cyclic codes 95

Theorem 9.4: a generator matrix and a check matrix for a cyclic code

Let C ⊆ Fn
q be a cyclic code with generator polynomial g(x) = g0 + g1x + . . . +

gn−kx
n−k and check polynomial h(x) = h0 + h1x+ . . .+ hkx

k.

The vector g and its next k − 1 cyclic shifts form a generator matrix for C:

G =


g0 g1 gn−k 0 . . . 0

0 g0 g1 gn−k
. . . 0

...
. . .

. . .
. . .

0 . . . 0 g0 gn−k

 (k rows).

The vector of the polynomial

←−
h (x) = hk + hk−1x+ . . .+ h0x

k,

obtained from h(x) by reversing the order of the coefficients, and its next n− k − 1

shifts form a check matrix for C:

H =


1 hk−1 h1 h0 0 . . . 0
...

. . .
. . .

. . .

0
. . . 1 hk−1 h1 h0 0

0 . . . 0 1 h1 h0

 (n− k rows).

Proof. The rows of G are linearly independent and the rows of H are linearly independent.

Indeed, H is a matrix in a row echelon form with no zero rows, and so is G up to scaling of

rows by a non-zero scalar g0: note that g0h0 = g(0)h(0) = 0n − 1 ̸= 0.

The linearly independent rows of G correspond to the polynomials g(x), xg(x), . . . , xk−1g(x)

and so they span {u(x)g(x) : deg u(x) < k} which by Theorem 9.3 is C. Thus, G is a

generator matrix for C.

Since the number of rows of H is n − k = dimC⊥ and the rows are linearly independent,

to show that H is a check matrix it is enough to show that HGT = 0, same as in the proof

of Theorem 7.1.

We express the inner product of vectors in terms of polynomials: if a, b ∈ Fn
q , then

a ·
←−
b = coefficient of xn−1 in a(x)b(x).

Indeed, with a = (a0, a1, . . . , an−1) and
←−
b = (bn−1, . . . , b1, b0) one has a ·

←−
b = a0bn−1 +

· · ·+ an−1b0 which is exactly the coefficient of xn−1 in the product of the polynomials a(x)

and b(x).

Cyclic codes 96

Number the rows of G from 0 to k− 1, the rows of H from 0 to n− k− 1. The rows of G

are xig, and the rows of H are the vectors of xjh written backwards. So an entry of HGT ,

which as we know is an inner product of a row of G and a row of H, is the coefficient of

xn−1 in xig(x)xjh(x) = xn+i+j −xi+j . But since n+ i+ j > n− 1 and i+ j < n− 1, this

coefficient is zero, proving HGT = 0.

Remark: this is not the only generator matrix (resp., check matrix) for C. As we know, a

generator matrix is not unique. Moreover, these matrices are not usually in standard form.

Note that a generator polynomial of C is unique.

Corollary 9.5: generator polynomial of C⊥

C⊥ is also a cyclic code with generator polynomial h−1
0

←−
h (x). (Scaling by h−1

0 is

necessary because the generator polynomial must by definition be monic.)

Example: cyclic binary codes of length 3

Use Theorem 9.3 and Theorem 9.4 to find all the cyclic binary codes of length 3.

Solution. Generator polynomials are monic factors of xn− 1 in Fq[x]. The first step is to

factorise xn − 1 into irreducible monic polynomials in Fq[x]. A polynomial is irreducible

if it cannot be written as a product of two polynomials of positive degree.

Note that the polynomial xn−1 is not irreducible in Fq[x]. Indeed, x
n−1 = (x−1)(xn−1+

· · ·+ x+ 1).

We work over the field F2 and observe:

x3 − 1 = (x− 1)(x2 + x+ 1).

The polynomial x− 1 = x+ 1 is irreducible, because it is of degree 1.

Can we factorise the polynomial x2+x+1 in F2[x]? If we could, we would have a factorisation

(x+a)(x+ b). But then ab = 1 which means a = b = 1 in F2. Note that (x+1)2 = x2+1

in F2[x]. We have shown that x2 + x+ 1 is irreducible in F2[x].

So the possible monic factors of x3 − 1 in F2[x] are:

1; 1 + x; 1 + x+ x2; 1 + x3.

We now list every cyclic code in F3
2, giving its generator matrix G, minimum distance d and

a well-known name of the code, and point out its dual code (which is also cyclic).

Cyclic codes 97

� g(x) = 1, G =

1 0 0

0 1 0

0 0 1

 which corresponds to the trivial binary code of length 3:

C = F3
2 with d = 1. The dual code of F3

2 is the null code (see below).

� g(x) = 1 + x, G =

[
1 1 0

0 1 1

]
. This is {000, 110, 011, 101} = E3, the binary even

weight code of length 3 which has d = 2. The dual of E3 is Rep(3,F2) (see below).

� g(x) = 1 + x + x2, G =
[
1 1 1

]
. This is {000, 111} = Rep(3,F2), the binary

repetition code of length 3 with d = 3. This code is (E3)
⊥.

� g(x) = 1 + x3. Theorem 9.4 returns matrix G with k = 3− 3 = 0 rows, G = [].

And indeed, by definition 1 + x3 is the generator polynomial of the null code {000},
which has empty generator matrix. It is a useless code but formally it is a linear and

cyclic code, so we have to allow it for reasons of consistency. The minimum distance

of the zero code is undefined. This code is (F3
2)

⊥.

Week 9

Exercises (answers at end)

Version 2023-11-10. To accessible online version of these exercises

Exercise 9.1. Find all cyclic codes of weight 1 in Fn
q .

Exercise 9.2. A burst of length ≤ l is defined as a vector in Fn
q with chosen l consecutive

symbols such that all non-zeros occur only within the chosen l symbols.

(a) Explain why a burst of length ≤ l has weight at most l, but not every vector of weight

l or less is a burst of length ≤ l.

(b) Let C ⊆ Fn
q be a cyclic code with generator polynomial of degree r. Show that C detects

all burst errors of length ≤ r. (That is, a burst of length ≤ r is not a codevector.)

Hint: cyclically shift b to positions 0, 1, . . . , r − 1 so that the polynomial b(x) is of degree

≤ r − 1. Show that such a polynomial cannot be in the code.

(Informally: this means that burst error detection by cyclic codes is better than “generic”

error detection. Cyclic codes are used on memory cards and in Ethernet networks where the

errors that occur are likely to be burst errors — scratches, electrical noise etc.)

Exercise 9.3. Data read from an SD card is encoded by CRC-16-CCITT: a binary cyclic

code C with generator polynomial g(x) = x16 + x12 + x5 + 1. The least n for which g(x)

divides the polynomial xn − 1 in F2[x] is n = 32767; accordingly, C is of length 32767.

(a) Calculate the rate of C.

(b) Show that C detects all burst errors of length up to 16.

(c) Show that all codevectors of C have even weight. Hint: start with the codevector g.

(d) Explain why d(C) ≤ 4. Deduce from (c) that d(C) is even. Prove that d(C) = 4.

98

ch9ex.html

Week 9

Exercises — solutions

Version 2023-11-10. To accessible online version of these exercises

Exercise 9.1. Find all cyclic codes of weight 1 in Fn
q .

Answer to E9.1. If C is of weight 1, C contains a vector (0, . . . , 0, λ, 0, . . . , 0) where λ is

the only non-zero symbol; hence by linearity also (0, . . . , 0, 1, 0, . . . , 0). Cyclic shifts of this

vector span the space Fn
q , so C must contain all vectors of length n. Hence C is trivial.

Trivial codes are the only cyclic codes of weight 1.

Exercise 9.2. A burst of length ≤ l is defined as a vector in Fn
q with chosen l consecutive

symbols such that all non-zeros occur only within the chosen l symbols.

(a) Explain why a burst of length ≤ l has weight at most l, but not every vector of weight

l or less is a burst of length ≤ l.

(b) Let C ⊆ Fn
q be a cyclic code with generator polynomial of degree r. Show that C detects

all burst errors of length ≤ r. (That is, a burst of length ≤ r is not a codevector.)

Hint: cyclically shift b to positions 0, 1, . . . , r − 1 so that the polynomial b(x) is of degree

≤ r − 1. Show that such a polynomial cannot be in the code.

(Informally: this means that burst error detection by cyclic codes is better than “generic”

error detection. Cyclic codes are used on memory cards and in Ethernet networks where the

errors that occur are likely to be burst errors — scratches, electrical noise etc.)

Answer to E9.2.

(a) Let l ≥ 2. The vector 1, 0, . . . , 0︸ ︷︷ ︸
l−1 zeros

, 1, 0, . . . , 0 is of weight 2 ≤ l but is not a burst of length

≤ l.

99

ch9ex.html

Exercises — solutions 100

(b) Let b ̸= 0 be a burst of length ≤ r. Assume for contradiction that b is a codeword of C.

Since C is a cyclic code, all vectors obtained from b by cyclic shifts are in C. In particular,

the following vector can be obtained from b by cyclic shifts:

b′ = b0 b1 . . . br−1︸ ︷︷ ︸
r symbols

0 0 . . . 0,

where the last n− r symbols are zero.

The codevector b′ corresponds to the code polynomial b0+ b1x+ . . .+ br−1x
r−1 which must

then be divisible by g(x). But a non-zero polynomial of degree ≤ r − 1 cannot be divisible

by a polynomial of degree r, a contradiction.

Exercise 9.3. Data read from an SD card is encoded by CRC-16-CCITT: a binary cyclic

code C with generator polynomial g(x) = x16 + x12 + x5 + 1. The least n for which g(x)

divides the polynomial xn − 1 in F2[x] is n = 32767; accordingly, C is of length 32767.

(a) Calculate the rate of C.

(b) Show that C detects all burst errors of length up to 16.

(c) Show that all codevectors of C have even weight. Hint: start with the codevector g.

(d) Explain why d(C) ≤ 4. Deduce from (c) that d(C) is even. Prove that d(C) = 4.

Answer to E9.3. (a) The dimension of C is k = n − deg g = 32751 so the rate is

R = k/n = 32751/32767 ≈ 0.9995.

(b) Follows from part (b) of the previous exercise.

(c) Looking at the coefficients of the polynomial g(x), we conclude that the codevector g

has four 1s, in positions 0, 5, 12 and 16. Thus, w(g) = 4.

A generator matrix of C has cyclic shifts of g as rows; so each row is of weight 4. It follows

that all rows of G lie in the binary even weight code En. Since En is a linear code, all linear

combinations of rows of G — that is, all codevectors of C — also lie in En and so have

even weight.

(d) Let c be a codevector of C of minimum positive weight; that is, w(C) = w(c). By (c),

w(c) is even. By minimality, w(c) ≤ w(g) = 4. It follows that w(c) is either 2 or 4.

Assume for contradiction that w(f) = 2. Up to a cyclic shift, the vector c (which has two

non-zero bits) corresponds to code polynomial of the form 1 + xd for some d < 32767. But

all code polynomials are divisible by g(x), and we are given that g(x) divides 1 + xn for

n = 32767 but not for any smaller n. This is a contradiction which proves that w(c) = 4.

General remark: Although the generator matrix and the parity check matrix of this code

are large, the encoding and error detection algorithms are based on polynomial division with

remainder. This has efficient hardware and software implementations.

Week 10

Golay codes. Classification of

perfect codes

Version 2023-11-29. To accessible online version of this chapter

Synopsis. One can explore cyclic codes of a given length over a given finite field in an

attempt to find codes with interesting/useful properties. In fact, all types of codes we

have considered so far will arise as cyclic codes. In this chapter, we define two new linear

equivalence classes of codes called Golay codes. In our approach, these arise as cyclic

codes, however, historically they were found in a different way. We give without proof a

complete classification of perfect codes over alphabets of prime power size up to parameter

equivalence, conjectured by Golay and proved by Tietäväinen and van Lint.

Recall that:

� the only way to specify a general non-linear code in Fn
q is to list all the codewords,

which consist of a total of qk × n symbols;

� a linear code can be specified by a generator matrix, which has k × n entries;

� a cyclic code can be specified in an even more compact way — by giving its generator

polynomial, which corresponds to a single codeword! We only need to specify n − k

coefficients of the generator polynomial (its degree is n− k and its leading coefficient

is 1).

Approach to searching for interesting/perfect/etc codes:

Look for divisors of xn−1 and hope that the cyclic codes they generate have a large minimum

distance. For example, among the cyclic codes in F7
2, there are two perfect, Hamming codes

(Exercise).

We will now describe two codes found by Marcel Golay in 1949. They are known as the

binary Golay code G23 and the ternary Golay code G11, respectively.

101

ch10.html

Golay codes. Classification of perfect codes 102

The binary Golay code G23

In F2[x], x
23 − 1 = (x+1)g(x)←−g (x), where g(x) = x11 + x10 + x6 + x5 + x4 + x2 +1 and

←−g (x) = x11 + x9 + x7 + x6 + x5 + x+ 1.

Exercise: check this! You may use a computer algebra system but it is always instructive to

multiply these out by hand.

Definition: binary Golay code G23

Define a binary Golay code to be the cyclic code in F23
2 generated by g(x), or any

code linearly equivalent to it. (Any) binary Golay code is denoted G23.

Remark: The cyclic code generated by ←−g (x) is seen to be linearly equivalent to the cyclic

code generated by g(x); the linear equivalence is by writing all the codevectors backwards.

The above definition does not reflect how the code was originally found (see below) but

suggests a practical way to construct a G23 code if need be: factorise x23 − 1 over F2 into

irreducible factors (e.g., using a computer algebra system) and take one such factor of degree

greater than 1 to be the generator polynomial of a cyclic code.

Theorem 10.1: parameters of G23

G23 is a perfect [23, 12, 7]2-code.

Proof of Theorem 10.1 — part 1. The code is binary (q = 2) of length n = 23 by

construction. The dimension is k = 23− deg g = 12.

It is easy to see that the weight of G23 is at most 7: indeed, the vector g ∈ G23 is

10101110001100000000000, of weight 7, and so w(G23) ≤ 7.

It is more difficult to show that the weight of G23 is exactly 7. We will present a theoretical

proof of this result using the extended code G24, and will also show how to obtain the same

result by a computer calculation.

We now prove that a [23, 12, 7]2 -code is perfect. The Hamming bound for a binary code in in

logarithmic form is k ≤ n−log2
((

n
0

)
+ · · ·+

(
n
t

))
. Here t = [(7−1)/2] = 3 so the argument

of log2 is 1+
(
23
1

)
+
(
23
2

)
+
(
23
3

)
= 1+23+23× 22

2 +23× 22
2 ×

21
3 = 1+23(1+11+77) = 2048.

One has 12 = 23− log2 2048 hence the Hamming bound is attained.

The proof that w(G23) = 7 will be given after a series of lemmas (proof to be continued).

Binary vectors: extending, overlaps, weights and orthogonality

To proceed, we need a mini-toolbox containing tools for working with binary vectors.

Golay codes. Classification of perfect codes 103

A binary vector v = (v1, v2, . . . , vn) is extended to obtain the vector v̂ = (v1, . . . , vn, vn+1)

where vn+1 = v1 + · · · + vn in F2. That is, a vector is extended by appending one bit so

that the resulting vector has even weight. Explicitly, we may write

v̂ =

{
(v, 0), if w(v) is even,

(v, 1), if w(v) is odd.

By extending each vector in a given binary code, we obtain the extended code:

Definition: extended code

If C is a binary linear code of length n, we define the extended code Ĉ of length

n+ 1 as {ĉ : c ∈ C}.

The following notion is useful:

Definition: overlap

If u, v ∈ Fn
2 , the overlap of u and v is the number of positions i such that ui = vi = 1.

It is easy to see that

w(u+ v) = w(u) + w(v)− 2× overlap(u, v) (10.1)

and

u · v = 0 ⇐⇒ overlap(u, v) is even. (10.2)

It follows that

w(u), w(v) are multiples of 4, u · v = 0 =⇒ w(u+ v) is a multiple of 4. (10.3)

Indeed, by (10.1), w(u+ v) is (multiple of 4) + (multiple of 4) − 2× overlap(u, v), and by

(10.2), 2× overlap(u, v) is a multiple of 4 so the result is a multiple of 4.

The extended binary Golay code G24

Definition: the extended binary Golay code G24

The extended code Ĝ23 is called the extended binary Golay code and is denoted

G24.

The code G24 is not cyclic, but we can modify the cyclic code methods used for G23 to

answer questions about G24. For example:

Golay codes. Classification of perfect codes 104

Example: generator matrix for G24

Write down a generator matrix for G24.

Solution. Theorem 9.4 gives a generator matrix for G23 as follows: the top row is the vector

g = 10101110001100000000000, and the rest of the rows are its cyclic shifts xg, . . . , x11g.

Extending each of these rows (of weight 7 which is odd) by appending 1 gives twelve

codevectors of G24, forming the matrix

G =



101011100011000000000001

010101110001100000000001

001010111000110000000001

000101011100011000000001

000010101110001100000001

000001010111000110000001

000000101011100011000001

000000010101110001100001

000000001010111000110001

000000000101011100011001

000000000010101110001101

000000000001010111000111


The rows of G are linearly independent, because they give a linearly independent set if

you delete the last bit). By definition of extended code, #G24 = #G23 = 212 and so

dimG24 = 12, same as the number of rows of G. Hence G is a generator matrix for G24.

The next two propositions establish two main properties of G24.

Proposition 10.2: G24 is self-dual

G24 is a self-dual code, that is, G24 = G⊥
24.

Proof. It is enough to check that the above generator matrix G for G24 satisfies GGT = 0

— that is, its rows r0, . . . , r11 are orthogonal to each other — and n = 2k. The latter is

clear as 24 = 2× 12. The former can be done in two ways.

Way 1 (manual): recall (10.2). Manually check that the overlap of ri and rj is even for all

i, j. It is enough to check the overlap of the top row with the other rows — the rest follows

by cyclic shifts of the first 23 bits.

Way 2 (working with polynomials): Write the rows of G as ri = x̂ig = (xig, 1) for

i = 0, 1, . . . , 11. We calculate the inner product, (xig, 1) · (xjg, 1) = xig · xjg + 1, of two

rows of G. Recall from the proof of Theorem 9.4 that the inner product of vectors a and
←−
b

Golay codes. Classification of perfect codes 105

is the coefficient of xn−1 in the polynomial a(x)b(x). The vector xjg written backwards is

seen to be x11−j←−g (x), so

xig · xjg + 1 =
(
coef. of x22 in xi+11−jg(x)←−g (x)

)
+ 1.

Note that

g(x)←−g (x) =
x23 − 1

x− 1
= x22 + x21 + · · ·+ x+ 1

is a polynomial where the coefficients of x0, . . . , x22 are all 1 and so x22 appears in the

polynomial xi+11−jg(x)←−g (x) with coefficient 1. Thus, xig · xjg + 1 = 1 + 1 = 0.

Self-duality of G24 allows us to deduce other further properties of this code.

Proposition 10.3: weights in G24

The weight of every codevector of G24 is a multiple of 4.

Proof. Each row ri of the generator matrix G constructed in the proof of Proposition 10.2

has weight 8 which is a multiple of 4. By Proposition 10.2, rows ofG are mutually orthogonal,

so by (10.3), a sum ri + rj of two rows of G also has weight divisible by 4.

We can now apply (10.3) to a sum of ri + rj and rk (both are codevectors of G24 so their

inner product is zero by Proposition 10.2) to show that a sum of three rows of G has weight

divisible by 4. Continuing in the same way, we show that a sum of any number of rows of

G, i.e., any codevector of G24, has weight divisible by 4.

Remark: rest of proof of Theorem 10.1

We are now ready to finish the proof of Theorem 10.1 about the parameters of G23.

Proof of Theorem 10.1 — part 2 (final). We are left to prove that the binary Golay code

G23 does not contain non-zero codevectors of weight less than 7.

We will take G23 to be cyclic with generator polynomial g(x), and will interchangeably use

vectors and polynomials. Assume v ∈ G23. If a vector v′ obtained from v by applying the

cyclic shift m times, then v′ ∈ G23; note that a term xi in the polynomial v(x) is shifted to

xi+m in v′(x) if i+m < n, more generally to (i+m) mod n, where n = 23.

w(v) cannot be 1, 2, 5 or 6. If v ∈ G23 has weight 1, 2, 5 or 6, then the extended vector

v̂ ∈ G24 has weight 2 or 6, not divisible by 4, contradicting Proposition 10.3.

w(v) cannot be 3. Assume w(v) = 3 so that v(x) = xi + xj + xk. Out of the 22 possible

cyclic shifts of v, at most six can have non-zero overlap with v: these shift xa to xb for

Golay codes. Classification of perfect codes 106

some a, b ∈ {i, j, k}. Hence there exists a shift v′ of v which has zero overlap with v. Then

v + v′ ∈ G23 has weight 6, contradicting the previous case.

w(v) cannot be 4. Suppose it can, and shift v so that v(x) = 1 + xa + xb + xc with

0 < a < b < c. Pick a code polynomial of weight 4 of least possible degree c.

Shifting v(x) to the left a times gives v′(x) = 1 + xb−a + xc−a + xn−a. Note that (v, 0)

and (v′, 0) lie in G24 = G⊥
24 and so have inner product 0, hence v · v′ = 0 and by (10.2) the

overlap of v and v′ must be even. The overlap is not 4 because v′(x) ̸= v(x): otherwise

one would have b = 2a, c = 3a and n = 4a, impossible as n = 23. The overlap is not 0 as

v(x) and v′(x) have term 1 in common. Hence the overlap of v and v′ is 2.

Observe that n− a = c is impossible, as it would give the code polynomial v(x)− v′(x) of

degree less than c and weight 2 (impossible by earlier cases) or 4 (contradicts minimality of

c), so n − a > c. Neither xn−a nor xc contribute to the overlap of v and v′, which leaves

three cases of how overlap 2 could be achieved.

Case c − a = b. Then v(x) = 1 + xa + xb + xa+b which factorises as (1 + xa)(1 + xb).

The code polynomial v(x) is divisible by the generator polynomial g(x) which is irreducible,

so 1 + xa or 1 + xb must be divisible by g(x). But this means a codevector of weight 2, a

contradiction.

Case c− a = a. Writing b = a+ d, we have v(x) = 1 + xa + xa+d + x2a. Shift d times to

obtain v′′(x) = xd + xa+d + xa+2d + x2a+d (since 2a < n− a, we have 2a+ d < n). The

polynomials v(x) and v′′(x) have the term xa+d in common, and the only possibility for the

overlap of v and v′′ to be 2 is a+2d = 2a, that is, a = 2d. Then v(x) = 1+x2d+x3d+x4d

which factorises as (1 + xd)(1 + xd + x3d). As above, either 1 + xd or 1 + xd + x3d must

be divisible by g(x), so there is a codevector of weight 2 or 3, a contradiction.

Case b − a = a. We have v(x) = 1 + xa + x2a + xc, and shift 2a times gives v′′(x) =

x2a+x3a+x4a+x(c+2a) mod n. The overlap of v and v′′ must be 2, and the two polynomials

have the term x2a in common, so there must be another common term. This is only possible

in two subcases.

Subcase c = 4a. We have v(x) = 1+xa+x2a+x4a which factorises as (1+xa)(1+x2a+

x3a). As above, this means a codevector of weight 2 or 3, contradicting earlier results.

Subcase (c+2a) mod n = 0. Here we have the code polynomial v′′(x) = 1+x2a+x3a+x4a,

which factorises in the same way as in the case c − a = a above, so that we arrive at the

same contradiction.

Conclusion. We showed that G23 has no codevectors of weight 1, 2, 3, 4, 5, 6 and so

w(G23) ≥ 7 as claimed. This completes the proof of Theorem 10.1.

The above theoretical proof that w(G23) = 7 gives the taste of how Coding Theory was

done in the last century. Today, the weight of G23 can be easily found using a computer —

Golay codes. Classification of perfect codes 107

consider for example the following code written for the computer algebra system SageMath:

1 sage: R.<x>=GF(2)[]
2 sage: factor(x^23 - 1)
3 (x+1)*(x^11+x^9+x^7+x^6+x^5+x+1)*(x^11+x^10+x^6+x^5+x^4+x^2+1)
4 sage: g = factor(x^23 - 1)[1][0]
5 sage: messagepolynomials = R.monics(max_degree =23-g.degree ()-1)
6 sage: codepolynomials = [u*g for u in messagepolynomials]
7 sage: min([len(c.coefficients ()) for c in codepolynomials])
8 7

Is the above code a proof? Many mathematicians would accept it as the source code can

be checked, and the calculation reproduced.

Remark: trivia

The code G24 was used by Voyager 1 & 2 spacecraft to transmit information back to

Earth (NASA, Jupiter and Saturn, 1979–81).

The ternary Golay code G11

In F3[x], x
11 − 1 = (x − 1)g(x)g1(x) where g(x) = x5 + x4 + 2x3 + x2 + 2 and g1(x) =

−←−g (x) = x5 + 2x3 + x2 + 2x+ 2.

Definition: the ternary Golay code G11

A ternary Golay code is the the cyclic code in F11
3 generated by g(x), or any code

linearly equivalent to it. (Notation: G11.)

Theorem 10.4: paremeters of G11

G11 is a perfect [11, 6, 5]3 code.

The crucial, and difficult, step in a theoretical proof of Theorem 10.4 is showing that G11

does not contain non-zero codevectors of weight less than 5. We omit the proof.

An alternative approach is a computer-based calculation:

Exercise. Prove Theorem 10.4, modifying the computer code provided after the proof of

Theorem 10.1 to calculate the weight of G11.

Historical notes

Golay found his two perfect codes in 1949, before cyclic codes were discovered. He wrote

check matrices for G23 and G11. Crucially, Golay observed that
(
23
0

)
+
(
23
1

)
+
(
23
2

)
+
(
23
3

)

https://www.sagemath.org/

Golay codes. Classification of perfect codes 108

is a power of two. From the proof of perfectness above one can see that the condition(
n
0

)
+ · · ·+

(
n
t

)
= 2r is necessary for the existence of a perfect t-error-correcting binary code

of length n. This condition is not sufficient: e.g., in his 1949 paper Golay also observes that(
90
0

)
+
(
90
1

)
+
(
90
2

)
= 212 but this does not lead to any perfect binary code of length 90.

Amazingly, Golay’s 1949 paper where he constructs all the Hamming codes and the two

Golay codes, is barely half a page long.

Now we can state the classification result about perfect codes.

Definition: parameter equivalence

We say that two codes are parameter equivalent, if they both are [n, k, d]q-codes

for some n, k, d and q.

The following theorem was proved by Tietäväinen and van Lint in 1973, more than twenty

years since Golay gave a conjectural list of perfect codes in alphabets of prime power size.

We will not give its proof here, but you should learn the statement of the theorem.

Theorem 10.5: classification of perfect codes where q is a prime power

Let q be a power of a prime number. A perfect [n, k, d]q-code is parameter equivalent

to one of the following:

� a trivial code: n arbitrary, k = n, d = 1, q any prime power;

� a binary repetition code of odd length: n odd, k = 1, d = n, q = 2;

� a Hamming code Ham(r, q): n =
qr − 1

q − 1
, k = n−r, d = 3, q any prime power;

� the Golay code G23, which is a [23, 12, 7]2-code;

� the Golay code G11 which is an [11, 6, 5]3-code.

Remark: perfect codes over general alphabets

Classification of perfect codes over alphabets of size not equal to a prime power is,

in general, an open problem.

Week 10

Exercises (answers at end)

Version 2023-11-29. To accessible online version of these exercises

Exercise 10.1 (the extended binary Golay code). (a) Determine the parameters [n, k, d]q of

G24. State how many bit errors per codevector is the code guaranteed to detect. Same for

correct. Find the rate of G24.

(b) A codevector of G24 is transmitted, and thirteen bit errors occur. Will an error be

detected?

Exercise 10.2 (This exercise is discussed in the review sessions). Find all possible binary

cyclic codes of length 7. For each such code, find its minimum distance, determine whether

the code is perfect. Determine which codes that you obtain are linearly equivalent.

Exercise 10.3. (i) Show that a perfect ternary code of length 11 and minimum distance 5

must contain 729 codewords.

(ii) A football match can end in a Win (2), Draw (1) or Loss (0) for your club. You buy

a football pool ticket which contains 11 boxes. You fill in the boxes trying to predict the

result of each of the 11 matches your club will play in a forthcoming tournament. If, at the

end of the tournament, it turns out that your ticket contained 9 or more correct guesses

(out of 11), you win a prize.

(a) Assuming that the outcomes of the 11 matches are completely independent and ran-

dom, show that one ticket wins a prize with a probability 1
729 . [Of course, this does

not mean that just by completing 729 tickets you are guaranteed a prize!]

(b) Explain how one can use a code from (i) to buy and complete 729 football pool tickets

and to guarantee that one of them wins a prize.

109

ch10ex.html

Week 10

Exercises — solutions

Version 2023-11-29. To accessible online version of these exercises

Exercise 10.1 (the extended binary Golay code). (a) Determine the parameters [n, k, d]q of

G24. State how many bit errors per codevector is the code guaranteed to detect. Same for

correct. Find the rate of G24.

(b) A codevector of G24 is transmitted, and thirteen bit errors occur. Will an error be

detected?

Answer to E10.1. Extending a binary code means appending a parity check bit to every

codevector, so that the resulting vector is of even weight. Appending one bit increases the

length by 1, so the length n of G24 is 24.

Appending a bit to every codevector does not change the number of codevectors. The G23

is a [23, 12, 7]2 code, so #G24 = #G23 = 212 and k = 12.

The minimum weight vector in G23 \ {0} has weight 7, so after extending, it becomes a

vector of weight 8. Extending a vector cannot decrease its weight, so d = w(G24) = 8. A

[24, 12, 8]2 code which is guaranteed to detect up to 8− 1 = 7 errors per codevector and is

guaranteed to correct [(8− 1)/2] = 3 errors per codevector.

The rate of G24 is k/n = 12/24 = 1/2.

(b) When 13 bit errors occur in a vector of even weight, the received vector has odd weight.

Since all codevectors of G24 have even weight (by construction), this will result in a detected

error — despite 13 being greater than 7.

Exercise 10.2 (This exercise is discussed in the review sessions). Find all possible binary

cyclic codes of length 7. For each such code, find its minimum distance, determine whether

the code is perfect. Determine which codes that you obtain are linearly equivalent.

110

ch10ex.html

Exercises — solutions 111

Answer to E10.2. First of all, one needs to write the polynomial x7 − 1 as a product of

irreducible factors. One can always start with x−1, because x−1 is always a factor of xn−1
for any n and for every field Fq. We have x7− 1 = (x− 1)(x6+x5+x4+x3+x2+x+1).

We now need to factorise x6 + x5 + x4 + x3 + x2 + x + 1 over F2. Unfortunately there

is no easy way. One can use brute force (this will not be expected in the exam): check

whether any of the polynomials of degree 1 are factors of x6 + x5 + x4 + x3 + x2 + x+ 1,

then polynomials of degree 2, then polynomials of degree 3. In this case we obtain the

factorisation x6+x5+x4+x3+x2+x+1 = (x3+x+1)(x3+x2+1). We conclude that

x7 − 1 = (x+ 1)(x3 + x+ 1)(x3 + x2 + 1)

as a product of irreducible polynomials over F2. (Note that x− 1 is the same as x+ 1 over

F2.)

There are thus 8 cyclic binary codes of length 7: they correspond to generator polynomials

which are product of a subset of the three irreducible factors of x7 − 1. To list all of them,

we denote g1 = x+ 1, g2 = x3 + x+ 1, g3 = x3 + x2 + 1:

g (generator polynomial) deg g dim gR7

1 0 7

g1 1 6

g2, g3 3 4

g1g2, g1g3 4 3

g2g3 6 1

g1g2g3 7 0

The code of dimension 0 is {0}, a cyclic code with generator polynomial x7 − 1.

Dimension 1: the generator polynomial of this code is (x3 + x+ 1)(x3 + x2 + 1) = 1+ x+

x2 + x3 + x4 + x5 + x6, see the table given above. Therefore, its generator matrix is

G =
[
1 1 1 1 1 1 1

]
.

This is the generator matrix of the binary repetition code of length 7. The minimum distance

of this code is 7.

Dimension 6: according to the table, the generator polynomial is g = x+ 1. Therefore, the

check polynomial is h = x7−1
g = 1+ x+ x2 + x3 + x4 + x5 + x6. Then the check matrix is

H =
[
1 1 1 1 1 1 1

]
. The check matrix generates the dual code, which therefore

is the repetition code. The code of dimension 6 is dual to the repetition code, hence is the

binary even weight code of length 7. The minimum distance is 2.

Dimension 7: the only code which has dimension equal to length is the trivial code. So the

answer is the trivial binary code of length 7. It has generator polynomial 1 (of degree 0).

Exercises — solutions 112

Dimension 3: we get two codes which are seen to be simplex codes Σ(3, 2) = Ham(3, 2)⊥.

From the above factorisation, there are two generator polynomials of degree 4:

g1(x) = (x+1)(x3+x+1) = x4+x3+x2+1 and g2(x) = (x+1)(x3+x2+1) = x4+x2+x+1,

giving rise to the generator matrices

G1 =

1 0 1 1 1 0 0

0 1 0 1 1 1 0

0 0 1 0 1 1 1

 and G2 =

1 1 1 0 1 0 0

0 1 1 1 0 1 0

0 0 1 1 1 0 1


which generate the codes C1 and C2. Observing that G2 is obtained from G1 by permuting

columns (e.g., permutation 2→ 6→ 4→ 2, 3↔ 5 or notice that both matrices are made

up of all possible non-zero columns of size 3 — they are parity check matrices for Hamming

code Ham(3, 2)), we conclude that both codes are Σ(3, 2) and are linearly equivalent. Recall

that their weight can be found by writing down all the 7 non-zero codevectors; all of them

have weight 4. They are [7, 3, 4]2-codes and are not perfect (the minimum distance is even).

Dimension 4: there are two codes, one generated by x3 + x+ 1, the other by x3 + x2 + 1.

Consider the code D with generator polynomial g(x) = x3 + x + 1. The parity check

polynomial of D is h(x) = (x+1)(x3+x2+1) = x4+x2+x+1 so its parity check matrix

given by Theorem 9.4 is

H =

0 0 1 0 1 1 1

0 1 0 1 1 1 0

1 0 1 1 1 0 0

 .

This is the same as matrix G1 above (with the order of rows reversed — but this does not

affect the code generated by the matrix), hence D⊥ is a Σ(3, 2) code C1. Therefore, D is

a Ham(3, 2) code, which is a perfect [7, 4, 3]2-code.

A completely similar argument shows that the code D′ with generator polynomial x3+x2+1

is dual to C2, hence is another Ham(3, 2) code and is linearly equivalent to D.

There are thus 8 binary cyclic codes of length 7. None of them has dimension 2 or 5.

Exercise 10.3. (i) Show that a perfect ternary code of length 11 and minimum distance 5

must contain 729 codewords.

(ii) A football match can end in a Win (2), Draw (1) or Loss (0) for your club. You buy

a football pool ticket which contains 11 boxes. You fill in the boxes trying to predict the

result of each of the 11 matches your club will play in a forthcoming tournament. If, at the

end of the tournament, it turns out that your ticket contained 9 or more correct guesses

(out of 11), you win a prize.

(a) Assuming that the outcomes of the 11 matches are completely independent and ran-

dom, show that one ticket wins a prize with a probability 1
729 . [Of course, this does

not mean that just by completing 729 tickets you are guaranteed a prize!]

Exercises — solutions 113

(b) Explain how one can use a code from (i) to buy and complete 729 football pool tickets

and to guarantee that one of them wins a prize.

Answer to E10.3. (i) Here is a calculation of the Hamming bound for a ternary code of

length 11 and minimum distance 5: t = [5−1
2] = 2, #S2(0) =

(
11
0

)
+
(
11
1

)
(3− 1) +

(
11
2

)
(3−

1)2 = 1+ 11× 2 + 55× 22 = 243 = 35, so that the Hamming bound (hence the cardinality

of a perfect code) is 311 /#S2(0) = 311/35 = 36 = 729.

(ii) (a) Let X denote the vector of match outcomes. Let Y denote the vector of values

written on the ticket. The probablility that Y wins a prize is the probability that d(X,Y) ≤ 2,

or, the same, that X belongs to the sphere S2(Y). Given the assumption that X is uniformly

distributed in F11
3 , this probability is calculated as #S2(Y)

#F11
3

. Note that #S2(Y) = #S2(0) =

243, so that the answer is 243/311 = 1/729.

(b) In fact, this is how the ternary Golay code G11, which is a perfect [11, 6, 5]3 code, was

discovered by Finnish football pool enthusiast Juhani Virtakallio in 1947. Read about this

in:

A. Barg, At the Dawn of the Theory of Codes, The Mathematical Intelligencer 15, no. 1,

1993, pp. 20–26; http://www.ece.umd.edu/~abarg/reprints/dawn.pdf

Virtakallio published the code — all the 729 codewords — in three (!) issues of a football

pool magazine. When Marcel Golay rediscovered the code in 1949, he realised that G11 is

a linear code, so it is enough to give only a check matrix. Following the introduction of

cyclic codes in 1957 by Eugene Prange, we can define this code by its generator polynomial

x5 + x4 + 2x3 + x2 + 2.

Briefly, one should write the 729 codewords of this perfect code C in the 729 tickets. Recall

from the proof of the Hamming bound that, since C is perfect, the space F11
3 is covered

by spheres of radius t = 2 centred at codevectors from C. Hence every vector in F11
3 is at

distance ≤ 2 from a codevector of C. Therefore, for every possible vector X of 11 match

outcomes there will be one out of the 729 tickets (codewords) which will differ from X in

at most two positions. That ticket will win the prize.

http://www.ece.umd.edu/~abarg/reprints/dawn.pdf

Week 11

Reed-Muller codes

Version 2023-12-03. To accessible online version of this chapter

Synopsis. The minimum distance of a perfect code cannot exceed 7 unless the code is a

repetition code. This is disappointingly low. In this final part of the course, we construct

Reed-Muller codes, a family of codes with large minimum distance. Unfortunately, they are

not perfect. The construction is based on Boolean functions, which arise in elementary logic

as columns of truth tables and are used in cicruit design.

Boolean functions

Fix m ≥ 1. Denote by V m the set of all binary words of length m. (It is the same as Fm
2

but viewed without any vector space structure).

For example, V 3 is the set {000, 001, 010, 011, 100, 101, 110, 111}.

Definition: Boolean functions

A Boolean function is a (set-theoretical) function f : V m → F2.

Remark: the number of Boolean functions

The total number of all Boolean functions on V m is |F2||Vm| = 22
m
.

Remark: Boolean functions as rows of a truth table. One has certainly met Boolean

functions when constructing truth tables for statements in basic logic. To give an illustration,

let m = 3. Consider statements which involve variables x1, x2, x3, each of which can take

values 0 (false) or 1 (true).

We will represent a logical statement by a row (not column) in a truth table. (We use rows

because it is common in Coding Theory to think of codevectors as of row vectors; and in

114

ch11.html

Reed-Muller codes 115

Reed-Muller codes, codevectors arise from functions.) In our example (m = 3), the table

will have 8 columns:

x1 0 1 0 1 0 1 0 1

x2 0 0 1 1 0 0 1 1

x3 0 0 0 0 1 1 1 1

(x1 and x2) =⇒ x3 1 1 1 0 1 1 1 1

0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1

v2v3 0 0 0 0 0 0 1 1

In this table, (x1 and x2) =⇒ x3 is a statement whose truth value depends on the values

of x1, x2 and x3. Therefore, it can be viewed as a Boolean function: its value at the binary

word 000 is 1, at the word 100 the value is 1, and so on. The only binary word where this

function takes the value 0 is the word 110: indeed, if x1 and x2 are true, then x1 and x2
is true, but x3 is false, and the value of the implication “true =⇒ false” is false.

(The other rows in the table will be explained below.)

The Boolean algebra

Because Boolean functions take values in F2 = {0, 1} which is a field, Boolean functions

can be added and multiplied pointwise: if f, g : V m → F2, one has the functions

f + g, fg : V m → F2; (f + g)(x) = f(x) + g(x), (fg)(x) = f(x)g(x), ∀x ∈ V m.

Also, there are constant functions 0 and 1. (They are shown in the 2nd, respectively 3rd,

row of the truth table above.) The Boolean function 1 is often called the tautological truth.

Definition: Boolean algebra

The vector space of Boolean functions f : V m → F2, together with the operation of

multiplication of functions, is the Boolean algebra on V m.

The traditional logical operations can be written in terms of the Boolean algebra operations

+ and ×. Clearly, multiplication is the same as AND:

fg = f and g.

The addition obeys the rule 0 + 0 = 0, 0 + 1 = 1+ 0 = 1, 1 + 1 = 0. The logical operation

which corresponds to addition is called the exclusive OR :

f + g = f xor g = ((f or g) and not(f and g)) .

Reed-Muller codes 116

How to write elements of the Boolean algebra as row vectors?

To write elements of the Boolean algebra on V m as binary vectors, so that we can define

the weight, the Hamming distance etc, we need to order all binary words of length m as

b0, . . . , b2m−1.

The standard ordering is obtained by interpreting the word x1x2 . . . xm as a number written

in base 2, i.e., the number 2m−1x1+ . . .+2xm−1+xm. Thus, the binary words of length 3

appear in the following order: 000, 001, 010, 011, 100, 101, 110, 111. However, the exact

choice of the order is not important, as we will see.

Definition: value vector of a Boolean function

Let f : V m → F2 be a Boolean function. The value vector of f is the binary vector

f = (f(b0), . . . , f(b2m−1)) of length 2m, where b0, . . . , b2m−1 is the chosen ordering

of V m.

The next notion does not at all depend on the chosen ordering of words in V m:

Definition: weight of a Boolean function

The weight of the Boolean function f is defined as the weight of the value vector f .

The weight does not depend on the ordering of the binary words, because

w(f) = #{b ∈ V m : f(b) = 1}.

The monomial basis of the Boolean algebra

We will now introduce two special kinds of elements of the Boolean algebra: coordinate

functions and, more generally, monomial functions.

Definition: coordinate function

The Boolean function vi : V
m → F2 defined by vi(x1, x2, . . . , xm) = xi is called the

ith coordinate function.

Definition: monomial, polynomial, degree

To each subset {i1, . . . , ir} ⊆ {1, . . . ,m} there corresponds the monomial function

(or monomial) vi1 . . . vir , of degree r.

Also, 1 is the monomial function corresponding to the set ∅, of degree 0.

A linear combination of monomials is a polynomial. The degree of a polynomial f

is the highest degree of a monomial which appears in f .

Reed-Muller codes 117

Remark: properties of monomials.

� Observation: because the values of any Boolean function are 0 and 1, one has vi =

v2i = v3i = This is the reason why there are no higher powers of the vi in the

definition of a monomial.

� The above also implies that the product of monomials is again a monomial, and the

product of polynomials is a polynomial.

� There are 2m monomials in the Boolean algebra on V m (because there are 2m subsets

of {1, . . . ,m}).

� The weight of a monomial is calculated in the following result.

Lemma 11.1: weight of a monomial

A monomial vi1vi2 . . . vir in the Boolean algebra on V m has weight 2m−r. That is,

w(v) = 2m−deg v if v is a monomial.

Proof. If b = x1x2 . . . xm is a binary word, vi1vi2 . . . vir(b) = 1 if and only if xi1 = xi2 =

· · · = xir = 1. Hence the number of binary words in V m where this monomial has value 1

is equal to the number of ways to choose the bits xj where j /∈ {i1, . . . , ir}. There are 2

choices (0 or 1) for each one of those m − r bits, hence the total number of such binary

words is 2m−r, and w(vi1 . . . vir) = #{b ∈ V m : vi1 . . . vir(b) = 1} = 2m−r.

Theorem 11.2: monomial basis

Monomials form a basis of the Boolean algebra.

Proof. First, we prove by contradiction that monomials are linearly independent.

Assume for contradiction that a non-empty linear combination (i.e., a sum, as we are working

over F2) of monomials equals the zero Boolean function:

vS1 + vS2 + · · ·+ vSk
= 0, k ≥ 1,

where S1, . . . Sk are some subsets of the index set {1, . . . ,m}. Without the loss of generality,

assume that vSk
has the highest degree:

deg vSi ≤ deg vSk
, i.e., #Si ≤ #Sk for all i = 1, . . . , k − 1.

Reed-Muller codes 118

Note that if S, T ⊆ {1, . . . ,m} then vSvT = vS∪T . Let now T = {1, . . . ,m} \ Sk, the

complement of the set Sk. Multiplying both sides by vT , we obtain

vS1∪T + vS2∪T + · · ·+ vSk∪T = 0. (∗)

We have Sk ∪ T = {1, . . . ,m}. If i < k then the set Si cannot contain Sk, and so

Si ∪ T ̸= {1, . . . ,m} and deg vSi∪T < m. Rewrite (∗) as

vS1∪T + vS2∪T + · · ·+ vSk−1∪T = v1v2 . . . vm.

The left-hand side is a sum of monomials of degree less than m. By Lemma 11.1, these

monomials have value vectors of even weight. A sum of vectors of even weight is a vector of

even weight: we know that the binary even weight code is linear. But the right-hand side is

the monomial v1 . . . vm which by Lemma 11.1 has weight 1, which is odd. This contradiction

proves that monomials are linearly independent.

It remains to show that the monomials are a spanning set in the Boolean algebra. There

are 2m monomials, so we can form 2(2
m) linear combinations of monomials by putting a

coefficient of 0 or 1 in front of each monomial. All these linear combinations are distinct, by

linear independence. On the other hand, there are 2(2
m) Boolean functions on V m. Hence

every Boolean function is a linear combination of monomials.

A basis is a set which is linearly independent and spanning, so the Theorem is proved.

Corollary 11.3: Boolean functions are polynomials

Each Boolean function on V m is uniquely written as a Boolean polynomial in the

coordinate functions v1, . . . , vm.

Remark: algebraic normal form. A representation of a Boolean function f : V m → F2

as a Boolean polynomial is sometimes referred to as the algebraic normal form of f . This

can be compared to disjunctive and conjunctive normal forms of a Boolean function used

for other purposes. Interested readers may find the details in the literature.

The Reed-Muller code

We now know that every element of the Boolean algebra on V m is a polynomial, i.e., a

sum of several monomials (squarefree products of coordinate functions). Recall also that

the degree of a polynomial is the top degree of a monomial in that polynomial, which does

not exceed m.

Reed-Muller codes 119

Definition: Reed-Muller code

Let 0 ≤ r ≤ m. The rth order Reed-Muller code on V m, denoted R(r,m), is

the space of value vectors of polynomials of degree at most r in the Boolean algebra

on V m.

Observe that R(r,m) is spanned by the value vectors of all monomials of degree at most r.

Example: work out R(0,m)

Find the parameters and write down all codevectors of the Reed-Muller code R(0,m).

Solution. The code R(0,m) consists of value vectors of Boolean polynomials on V m of

degree ≤ 0. There are only two such polynomials, 0 and 1, hence

R(0,m) = {00 . . . 0, 11 . . . 1} = Rep(2m,F2)

is the repetition code. The length is 2m = #V m. The dimension is 1. The minimum

distance equals the length. A [2m, 1, 2m]2-code.

Example: R(m,m)

Show that R(m,m) = F2m
2 , the trivial binary code of length 2m.

Solution. R(m,m) consists of value vectors of polynomials on V m of degree ≤ m. All

Boolean polynomials have degree at most m, and, by Corollary 11.3, every possible binary

vector of length 2m is a value vector of some polynomial. Hence R(m,m) consists of all

possible binary vectors of length 2m, i.e., is the trivial code.

The key result on Reed-Muller codes is the following theorem, which gives the parameters

of these codes.

Theorem 11.4: parameters of a Reed-Muller code

R(r,m) has length 2m, dimension
(
m
0

)
+
(
m
1

)
+ . . . +

(
m
r

)
and minimum distance

2m−r.

Proof. Length = 2m by construction: a value vector is made up of 2m bits obtained by

evaluating the given function on the 2m binary words in V m.

Value vectors of monomials of degree 0, 1, . . . , r span R(r,m) by definition of R(r,m), and

are linearly independent by Theorem 11.2, hence form a basis of R(r,m). The number of

monomials of degree d is the same as the number of d-element subsets of {1, . . . ,m}, which
is
(
m
d

)
, so the total number of monomials in the basis of R(r,m) — i.e., the dimension of

R(r,m) — is as stated.

Reed-Muller codes 120

Minimum distance: the code R(r,m) contains monomials of degree r, for example,

v1v2 . . . vr. By Lemma 11.1, these have weight 2m−r. Hence d(R(r,m)) = w(R(r,m))

is at most 2m−r.

It remains to show that w(R(r,m)) ≥ 2m−r. We do this by induction in m.

Base case m = 1. According to the Examples above, the two possible codes are R(0, 1) =

Rep(2,F2) of weight 2 = 21−0 and R(1, 1) = F2m
2 of weight 1 = 21−1. So the inequality

w(R(r,m)) ≥ 2m−r is satisfied when m = 1.

Inductive step. Assume w(R(r,m−1)) ≥ 2m−1−r for all r = 0, . . . ,m−1. This means that

the weight of any non-zero polynomial of degree ≤ r in v1, . . . , vm−1 is at least 2m−1−r:

h ̸= 0, deg h ≤ r =⇒ #{y ∈ V m−1 : h(y) = 1} ≥ 2m−1−r. (†)

The set V m of binary words of length m splits into two subsets,

V m−10 = {x1 . . . xm : xm = 0} and V m−11 = {x1 . . . xm : xm = 1}

of words that end in 0 and words that end in 1, respectively. We need to take a polynomial

0 ̸= f : V m → F2 of degree ≤ r and prove that w(f) ≥ 2m−r. We have

w(f) = #{b ∈ V m−10 : f(b) = 1}+#{b ∈ V m−11 : f(b) = 1}. (‡)

Each monomial in f contains a copy of vm or none, so we can write

f = g + hvm,

where g, h are polynomials in v1, . . . , vm−1.

The case h = 0. Here g is a non-zero polynomial of degree ≤ r in v1, . . . , vm−1, and so

r ≤ m − 1. By (†), there are at least 2m−1−r words y ∈ V m−1 where g(y) = 1. For

each such word y we have y0 ∈ V m−10, y1 ∈ V m−11 and f(y0) = f(y1) = 1, and so

y contributes twice when counting the weight of f in (‡). Hence w(f) = 2w(g) and so

w(f) ≥ 2× 2m−1−r = 2m−r.

The case h ̸= 0. We note that the values of f on V m−10 are the same as the values of g

on V m−1, because hvm|V m−10 = 0. Furthermore, the values of f on V m−11 are the same

as the values of g + h on V m−1, because on V m−11 we have vm = 1. Hence (‡) gives

w(f) = w(g) + w(g + h).

By the triangle inequality, w(a + b) ≤ w(a) + w(b) for any vectors a, b. Hence w(g) +

w(g + h) ≥ w(g + (g + h)) = w(h). Here deg h ≤ r − 1 because deg hvm ≤ r, so the

inductive hypothesis (†) applies and gives w(h) ≥ 2m−1−(r−1) = 2m−r. We proved that

w(f) ≥ 2m−r, as required.

To conclude, by induction w(R(r,m)) ≥ 2m−r for all m and all r ≤ m.

Reed-Muller codes 121

The key duality between Reed-Muller codes

We finish the chapter by identifying the dual code of R(r,m), which happens to be another

Reed-Muller code.

Theorem 11.5: duality between Reed-Muller codes

For all m ≥ 1 and for all r such that 0 ≤ r ≤ m− 1,

R(m− 1− r,m) = R(r,m)⊥.

Proof. If f, g : V m → F2 are Boolean functions, the definition of inner product means that

f · g =
∑
b∈V m

f(b)g(b) =
∑
b∈V m

(fg)(b).

If f is a monomial of degree ≤ r and g is a monomial of degree ≤ m− 1− r, then fg is a

monomial of degree ≤ m − 1. By Lemma 11.1, there are exactly 2m−deg fg words b ∈ V m

such that (fg)(b) = 1. Since m − deg fg ≥ 1, 2m−deg fg is an even number, and so the

sum
∑

b∈V m(fg)(b) is zero in F2. This shows that f is orthogonal to g.

Since monomials f of degree ≤ r span R(r,m), this shows that g ∈ R(r,m)⊥. Thus,

R(m− 1− r,m) is spanned by elements of R(r,m)⊥, so R(m− 1− r,m) ⊆ R(r,m)⊥.

We will now compare the dimensions. We have dimR(m−1−r,m) =
(
m
0

)
+ · · ·+

(
m

m−1−r

)
.

Using the relation
(
m
i

)
=
(

m
m−i

)
, we rewrite this as

(
m
m

)
+
(

m
m−1

)
+ · · · +

(
m
r+1

)
. Finally,

dimR(m − 1 − r,m) + dimR(r,m) =
∑m

i=0

(
m
i

)
= 2m, the length of the Reed-Muller

codes. Hence dimR(m− 1− r,m) = 2m − dimR(r,m) = dimR(r,m)⊥.

Thus, R(r,m)⊥ contains subspace R(m − 1 − r,m) of the same dimension as R(r,m)⊥,

hence a subset R(m − 1 − r,m) of the same cardinality as R(r,m)⊥. We conclude that

R(r,m)⊥ = R(m− 1− r,m).

Exercise. The code R(m,m) is excluded from Theorem 11.5. How would you define

“R(−1,m)” which should be the dual of R(m,m)?

Theorem 11.5 can be used to identify particular Reed-Muller codes and to deduce their

further properties. Examples of this are in the exercises to this chapter.

Week 11

Exercises (answers at end)

Version 2023-12-03. To accessible online version of these exercises

Exercise 11.1 (identification of the Reed-Muller codes with m = 3). Let m = 3. Write

down the value vectors (in F8
2) of all the monomials in the Boolean algebra. Hence find

generator matrices of the codes R(r, 3), 0 ≤ r ≤ 3. Try to recognise the codes obtained.

Partial answer. We use a slightly unconventional ordering of binary words in V 3. The value

vectors of all the monomials in the Boolean algebra with m = 3:

001 010 011 100 101 110 111 000

1 1 1 1 1 1 1 1 1

v1 0 0 0 1 1 1 1 0

v2 0 1 1 0 0 1 1 0

v3 1 0 1 0 1 0 1 0

v1v2 0 0 0 0 0 1 1 0

v1v3 0 0 0 0 1 0 1 0

v2v3 0 0 1 0 0 0 1 0

v1v2v3 0 0 0 0 0 0 1 0

Exercise 11.2 (“the Mariner 9 code”). Check that R(1, 5) is a [32, 6, 16]2 code and detects

up to 15 errors in a 32-bit codeword.

Exercise 11.3. Show that R(r,m) is a self-orthogonal code, if and only if r < m/2.

Exercise 11.4. Show that the code R(m− 2,m) is, up to linear equivalence, an extended

Hamming code Ĥam(m, 2).

122

ch11ex.html

Week 11

Exercises — solutions

Version 2023-12-03. To accessible online version of these exercises

Exercise 11.1 (identification of the Reed-Muller codes with m = 3). Let m = 3. Write

down the value vectors (in F8
2) of all the monomials in the Boolean algebra. Hence find

generator matrices of the codes R(r, 3), 0 ≤ r ≤ 3. Try to recognise the codes obtained.

Partial answer. We use a slightly unconventional ordering of binary words in V 3. The value

vectors of all the monomials in the Boolean algebra with m = 3:

001 010 011 100 101 110 111 000

1 1 1 1 1 1 1 1 1

v1 0 0 0 1 1 1 1 0

v2 0 1 1 0 0 1 1 0

v3 1 0 1 0 1 0 1 0

v1v2 0 0 0 0 0 1 1 0

v1v3 0 0 0 0 1 0 1 0

v2v3 0 0 1 0 0 0 1 0

v1v2v3 0 0 0 0 0 0 1 0

Answer to E11.1. A generator matrix for R(0, 3) is formed by the value vector of 1, hence

is G0 = [11111111]. We conclude that

R(0, 3) = Rep(8,F2).

The value vectors of 1, v1, v2, v3 form a generator matrix G1 of R(1, 3). A really interesting

code of length 8 and dimension 4. From the general theory of Reed-Muller codes we know

that R(r,m) = R(m−1− r,m)⊥. In particular, R(1, 3) is a self-dual binary code. This can

be checked directly: the rows of G1 are of even weight (meaning that every row is orthogonal

to itself) and are pairwise orthogonal.

123

ch11ex.html

Exercises — solutions 124

Note that rows v1, v2, v3 form a 3 × 8 matrix Ĥ which contains each 3-bit column once.

This is the generator matrix of the simplex code Σ(3, 2) with zero column appended — in

other words, the extended simplex code Σ̂(3, 2).

Note that every vector ĉ in the extended Hamming code Ĥam(3, 2) satisfies ĉĤT = 000, as

the first 7 bits of ĉ form a Hamming codevector, and the last bit of ĉ is not used in ĉĤT .

Note also that ĉ · 11111111 = 0 as, by definition of an extended code, ĉ has even weight.

Hence ĉG1 = 0000, and the matrix G1, formed by rows 1, v1, v2, v3, is a check matrix

for Ĥam(3, 2). But Ĥam(3, 2) = H8 is a self-dual code, as seen in earlier exercises. We

conclude that G1 is also a generator matrix for this code, hence

R(1, 3) = Ĥam(3, 2).

The code R(2, 3) is generated by the top seven rows in the table above. We have

R(2, 3) = R(0, 3)⊥ = Rep(8,F2)
⊥ = E8.

Finally, R(3, 3) = F8
2 is the trivial binary code, of length 8 and dimension 8.

Exercise 11.2 (“the Mariner 9 code”). Check that R(1, 5) is a [32, 6, 16]2 code and detects

up to 15 errors in a 32-bit codeword.

Answer to E11.2. Put r = 1 and m = 5. The length of R(1, 5) is 25 = 32 and

dimR(1, 5) =
(
5
0

)
+
(
5
1

)
= 1 + 5 = 6. The minimum distance of R(1, 5) is 25−1 = 16.

The code R(1, 5) is binary, as are all Reed-Muller codes. Hence it is a [32, 6, 16]2-code as

claimed.

Trivia: The code R(1, 5) was used by NASA Mariner 9 space probe to transmit greyscale

images of the surface of Mars to Earth in 1972. It is a [32, 6, 16]2 code. Each pixel was a

6-bit message, representing 64 grey values, and encoded as a 32-bit codeword. The code

corrected up to 7 errors in a codeword (wasn’t that an overkill?..)

Exercise 11.3. Show that R(r,m) is a self-orthogonal code, if and only if r < m/2.

Answer to E11.3. R(r,m) is self-orthogonal ⇐⇒ R(r,m) ⊆ R(r,m)⊥ = R(m−1−r,m)

⇐⇒ r ≤ m− 1− r ⇐⇒ 2r ≤ m− 1 ⇐⇒ 2r < m ⇐⇒ r < m/2.

Exercise 11.4. Show that the code R(m− 2,m) is, up to linear equivalence, an extended

Hamming code Ĥam(m, 2).

Answer to E11.4. Sketch of proof. Order the binary words in V m so that the zero word

00 . . . 0 comes last.

The value vectors of v1, . . . , vm form a matrix whose last column is zero, preceded by 2m−1

distinct non-zero m-bit columns. This is the generator matrix of Σ̂(m, 2).

Exercises — solutions 125

Hence any ĉ ∈ Ĥam(m, 2) is orthogonal to rows v1, . . . , vm. Note that ĉ has even weight,

hence is orthogonal to row 1 which consists of all ones.

This shows that Ĥam(m, 2) lies inside the dual code to the code spanned by 1, v1, . . . , vm.

That is, Ĥam(m, 2) ⊆ R(1,m)⊥. The dimension of both sides is 2m − (m + 1), so we

conclude that Ĥam(m, 2) = R(1,m)⊥. It remains to note that R(1,m)⊥ = R(m − 2,m)

by a result from the course.

	ch1
	ch1ex
	ch1exans
	ch2
	ch2ex
	ch2exans
	ch3
	ch3ex
	ch3exans
	ch4
	ch4ex
	ch4exans
	ch5
	ch5ex
	ch5exans
	ch6
	ch6ex
	ch6exans
	ch7
	ch7ex
	ch7exans
	ch8
	ch8ex
	ch8exans
	ch9
	ch9ex
	ch9exans
	ch10
	ch10ex
	ch10exans
	ch11
	ch11ex
	ch11exans

