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Cyclic codes
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Synopsis. Cyclic codes form a subclass of linear codes. Cyclic codes are easy to define, but

to reveal their advantages, one needs to study them using polynomials. We identify Fn
q with

the space Rn of polynomials in Fq[x] of degree less than n, so that a linear code of length

n becomes a subspace of Rn. We prove that cyclic codes are subspaces of very special

form: a cyclic code C consists of all multiples, in Rn, of its generator polynomial g(x). We

also define a check polynomial of C. We can classify cyclic codes of length n by listing all

monic divisors of the polynomial xn − 1 in Fq[x]. Theory and applications of cyclic codes

are underpinned by the Division Theorem for polynomials and the long division algorithm,

which we review here.

Definition: cyclic shift, cyclic code

For a vector a = (a0, a1, . . . , an−1) ∈ Fn
q , we denote s(a) = (an−1, a0, . . . , an−2) and

call the vector s(a) the cyclic shift of a.

A cyclic code in Fn
q is a linear code C such that ∀a ∈ C, s(a) ∈ C.

Equivalently, a cyclic code is a linear code C such that s(C) = C.

Remark: We can iterate the cyclic shift, so if a cyclic code C contains (a0, a1, . . . , an−1),

then C also contains the vectors (an−2, an−1, a0, . . . , an−3), . . . , (a1, . . . , an−1, a0).

Vectors as polynomials

To study cyclic codes, we will identify vectors of length n with polynomials of degree

< n with coefficients in the field Fq:

a = (a0, a1, . . . , an−1) 7→ a(x) = a0 + a1x+ . . .+ an−1x
n−1 ∈ Fq[x]

Here Fq[x] is the ring of polynomials in one variable, x, with coefficients in Fq.
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Notation: the polynomial a(x) and the vector a

If n is given and a(x) is a polynomial of degree less than n, a (same letter, underlined)

will denote the vector which corresponds to a(x) in Fn
q .

Example: E3 is a cyclic code

Show that the binary even weight code E3 = {000, 110, 011, 101} ⊆ F3
2 is cyclic. List

the code polynomials of E3.

Solution. We know that E3 is a linear code. It is closed under the cyclic shift: 000 is

invariant under the cyclic shift, and 110
s−→ 011

s−→ 101. Hence E3 is a cyclic code:

Codevector Code polynomial Remark

000 0

110 1 + x

011 x+ x2 = x(1 + x)

101 1 + x2 = (1 + x)(1 + x)

We will soon explain the notable fact that all code polynomials of E3 are multiples of 1+x.

The Division Theorem for polynomials

In general we cannot divide f(x) by g(x) in Fq[x] and expect to get a polynomial. However,

just as the ring Z of integers, the ring Fq[x] has an extra operation called division with

remainder, as per the following

Theorem 9.1: Division Theorem for polynomials

For all f(x) ∈ Fq[x], g(x) ∈ Fq[x] \ {0}, there exist unique Q(x), r(x) ∈ Fq[x] with

f(x) = g(x)Q(x) + r(x) and deg r(x) < deg g(x)

(possibly r(x) = 0). In this case the polynomial Q(x) is the quotient, and r(x) the

remainder, of f(x) when divided by g(x).

We will not prove the Division Theorem but we will note and use the practical algorithm for

finding the quotient and the remainder, known as long division of polynomials.

Example: long division of polynomials

Divide x5 + 1 by x2 + x+ 1 in F2[x], finding the quotient and the remainder.
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Solution.
x3 + x2 +1 (quotient)

x2 + x+ 1 x5 +1 (dividend)
−
x5 + x4 + x3

x4 + x3 +1
−
x4 + x3 + x2

x2 +1
−
x2 + x+1

x (remainder)

Hence x5 + 1 = (x2 + x+ 1)Q(x) + r(x) in F2[x], with Q(x) = x3 + x2 + 1 and r(x) = x.

This example shows long division of polynomials over F2. Division by a fixed binary polyno-

mial is widely implemented in electronic circuits at hardware level, by means of shift feedback

registers. We will soon see why such implementations are needed.

The generator polynomial of a cyclic code

In what follows, Rn denotes the space of polynomials of degree less than n.

Definition: generator polynomial

A generator polynomial of a cyclic code C ⊆ Rn, C ̸= {0} is a monic polynomial

of least degree in C.

By convention, the generator polynomial of the null code {0} ⊆ Rn is xn − 1.

Recall that a polynomial g(x) is monic if the coefficient of the highest power of x in g(x)

is 1.

Lemma 9.2: existence and uniqueness of a generator polynomial

Every cyclic code C has a unique generator polynomial g(x).

Proof. If C = {0}, by definition xn−1 is the unique generator polynomial. Assume C ̸= {0}.

Existence: take g(x) ∈ C to be a non-zero polynomial of lowest degree in C. Make g(x)

monic by dividing it by its leading coefficient. This does not change the degree, so we now

have a monic polynomial of least degree in C. Existence is proved.

Uniqueness: let g1(x) ∈ C be another generator polynomial, then by definition g1(x) is

monic and has the same degree as g(x). So f(x) = g1(x) − g(x) has degree less than

deg g(x) (because the leading term xdeg g cancels due to subtraction). Note that f(x) ∈ C

because C is linear. If f(x) ̸= 0, divide f(x) by its leading coefficient and obtain a monic
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polynomial, again in C, of degree less than deg g. This contradicts the choice of g(x).

Hence f(x) must be 0, and g1(x) = g(x). Uniqueness is proved.

Theorem 9.3: properties of the generator polynomial

Let C ⊆ Rn be a cyclic code with generator polynomial g(x). Write deg g = n− k.

Then

1. C = {u(x)g(x) : u(x) ∈ Rk}, i.e., the code polynomials of C are all possible

multiples of g(x) of degree less than n.

2. g(x) is a monic factor of the polynomial xn − 1 in Fq[x].

Proof. Both claims are trivially true when C = {0} and g(x) = xn−1, so assume C ̸= {0}.

1. Observe that, writing elements of C as vectors, we have

g = (g0, g1, . . . , gn−k, 0, 0, . . . , 0︸ ︷︷ ︸
k−1 zeros

)

and, as long as i ≤ k − 1,

xig = (0, . . . , 0︸ ︷︷ ︸
i zeros

, g0, g1, . . . , gn−k, 0, . . . , 0︸ ︷︷ ︸
k−1−i zeros

).

That is, xig is obtained from g by applying the cyclic shift i times. Since C is cyclic, this

means that xg(x), . . . , xk−1g(x) ∈ C.

Now, every polynomial u(x) ∈ Rk — that is, a polynomial of degree less than k — is

written as u0 + u1x + · · · + uk−1x
k−1 for some u0, . . . , uk−1 ∈ Fq. Hence u(x)g(x) is a

linear combination of the polynomials g(x), xg(x), . . . , xk−1g(x) which are in C, and, as C

is linear, u(x)g(x) ∈ C. We proved that C ⊇ {u(x)g(x) : u(x) ∈ Rk}.

Let us show that C ⊆ {u(x)g(x) : u(x) ∈ Rk}. Take f(x) ∈ C and apply the Division

Theorem for polynomials to write r(x) = f(x) − g(x)Q(x) where deg r(x) < deg g(x).

We will get degQ = deg f − deg g < n − (n − k) = k and so, by what has already been

proved, g(x)Q(x) ∈ C. Then by linearity r(x) ∈ C. We have seen already that there

cannot be a non-zero polynomial in C of degree strictly less than deg g, so r(x) = 0 and

f(x) = g(x)Q(x) is a multiple of g(x), as claimed. Part 1 of the Theorem is proved.

2. Continuing from the above, observe that

s(xk−1g) = (gn−k, 0, . . . , 0︸ ︷︷ ︸
k−1 zeros

, g0, g1, . . . , gn−k−1)
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where s is the cyclic shift. Hence the vector s(xk−1g) corresponds to the polynomial

gn−k + xk(g0 + g1x+ · · ·+ gn−k−1x
n−k−1)

which can be written as

gn−k + xkg(x)− gn−kx
n = xkg(x)− (xn − 1),

as gn−k = 1 given that g(x) is monic. Since C is cyclic, s(xk−1g) ∈ C and so xkg(x) −
(xn − 1) ∈ C. Then by Part 1, xkg(x) − (xn − 1) = u(x)g(x) for some polynomial u(x),

and so xn − 1 = (xk − u(x))g(x) which shows that g(x) is indeed a factor of xn − 1.

Example: the generator polynomial of E3

The code E3 as a subspace of F2[x] consists of polynomials 0, 1+x, x+x2 = x(1+x)

and 1 + x2 = (1 + x)2. The generator polynonial of E3 is g(x) = 1 + x of degree 1.

As we have already noted, all the code polynomials of E3 are multiples of 1 + x.

Error detection by a cyclic code

Theorem 9.3 means that if C is a cyclic code, there is no need to store a check matrix

for error detection. To determine whether the received vector y is a codevector, divide the

polynomial y(x) by the generator polynomial g(x); the remainder is 0, if and only if y ∈ C.

This is how error detection is implemented in practice for binary cyclic codes (e.g., in Ethernet

networks). Long division by g(x) is implemented by circuitry.

Nevertheless, for theoretical purposes we would like to have generator and check matrices

for a cyclic code with a given generator polynomial.

The check polynomial

Definition: check polynomial

Let g(x) be the generator polynomial of a cyclic code C ⊆ Fn
q . The polynomial h(x)

defined by g(x)h(x) = xn − 1 is the check polynomial of C.

Note that if deg g(x) = n− k, then deg h(x) = k, and h is monic.
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Theorem 9.4: a generator matrix and a check matrix for a cyclic code

Let C ⊆ Fn
q be a cyclic code with generator polynomial g(x) = g0 + g1x + . . . +

gn−kx
n−k and check polynomial h(x) = h0 + h1x+ . . .+ hkx

k.

The vector g and its next k − 1 cyclic shifts form a generator matrix for C:

G =


g0 g1 . . . . . . gn−k 0 . . . 0

0 g0 g1 . . . . . . gn−k
. . . 0

...
. . .

. . .
. . .

0 . . . 0 g0 . . . . . . gn−k

 (k rows).

The vector of the polynomial

←−
h (x) = hk + hk−1x+ . . .+ h0x

k,

obtained from h(x) by reversing the order of the coefficients, and its next n− k − 1

shifts form a check matrix for C:

H =


1 hk−1 . . . . . . h1 h0 0 . . . 0
...

. . .
. . .

. . .

0
. . . 1 hk−1 . . . . . . h1 h0 0

0 . . . 0 1 . . . . . . h1 h0

 (n− k rows).

Proof. The rows of G are linearly independent and the rows of H are linearly independent.

Indeed, H is a matrix in a row echelon form with no zero rows, and so is G up to scaling of

rows by a non-zero scalar g0: note that g0h0 = g(0)h(0) = 0n − 1 ̸= 0.

The linearly independent rows of G correspond to the polynomials g(x), xg(x), . . . , xk−1g(x)

and so they span {u(x)g(x) : deg u(x) < k} which by Theorem 9.3 is C. Thus, G is a

generator matrix for C.

Since the number of rows of H is n − k = dimC⊥ and the rows are linearly independent,

to show that H is a check matrix it is enough to show that HGT = 0, same as in the proof

of Theorem 7.1.

We express the inner product of vectors in terms of polynomials: if a, b ∈ Fn
q , then

a ·
←−
b = coefficient of xn−1 in a(x)b(x).

Indeed, with a = (a0, a1, . . . , an−1) and
←−
b = (bn−1, . . . , b1, b0) one has a ·

←−
b = a0bn−1 +

· · ·+ an−1b0 which is exactly the coefficient of xn−1 in the product of the polynomials a(x)

and b(x).
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Number the rows of G from 0 to k− 1, the rows of H from 0 to n− k− 1. The rows of G

are xig, and the rows of H are the vectors of xjh written backwards. So an entry of HGT ,

which as we know is an inner product of a row of G and a row of H, is the coefficient of

xn−1 in xig(x)xjh(x) = xn+i+j −xi+j . But since n+ i+ j > n− 1 and i+ j < n− 1, this

coefficient is zero, proving HGT = 0.

Remark: this is not the only generator matrix (resp., check matrix) for C. As we know, a

generator matrix is not unique. Moreover, these matrices are not usually in standard form.

Note that a generator polynomial of C is unique.

Corollary 9.5: generator polynomial of C⊥

C⊥ is also a cyclic code with generator polynomial h−1
0

←−
h (x). (Scaling by h−1

0 is

necessary because the generator polynomial must by definition be monic.)

Example: cyclic binary codes of length 3

Use Theorem 9.3 and Theorem 9.4 to find all the cyclic binary codes of length 3.

Solution. Generator polynomials are monic factors of xn− 1 in Fq[x]. The first step is to

factorise xn − 1 into irreducible monic polynomials in Fq[x]. A polynomial is irreducible

if it cannot be written as a product of two polynomials of positive degree.

Note that the polynomial xn−1 is not irreducible in Fq[x]. Indeed, x
n−1 = (x−1)(xn−1+

· · ·+ x+ 1).

We work over the field F2 and observe:

x3 − 1 = (x− 1)(x2 + x+ 1).

The polynomial x− 1 = x+ 1 is irreducible, because it is of degree 1.

Can we factorise the polynomial x2+x+1 in F2[x]? If we could, we would have a factorisation

(x+a)(x+ b). But then ab = 1 which means a = b = 1 in F2. Note that (x+1)2 = x2+1

in F2[x]. We have shown that x2 + x+ 1 is irreducible in F2[x].

So the possible monic factors of x3 − 1 in F2[x] are:

1; 1 + x; 1 + x+ x2; 1 + x3.

We now list every cyclic code in F3
2, giving its generator matrix G, minimum distance d and

a well-known name of the code, and point out its dual code (which is also cyclic).
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� g(x) = 1, G =

1 0 0

0 1 0

0 0 1

 which corresponds to the trivial binary code of length 3:

C = F3
2 with d = 1. The dual code of F3

2 is the null code (see below).

� g(x) = 1 + x, G =

[
1 1 0

0 1 1

]
. This is {000, 110, 011, 101} = E3, the binary even

weight code of length 3 which has d = 2. The dual of E3 is Rep(3,F2) (see below).

� g(x) = 1 + x + x2, G =
[
1 1 1

]
. This is {000, 111} = Rep(3,F2), the binary

repetition code of length 3 with d = 3. This code is (E3)
⊥.

� g(x) = 1 + x3. Theorem 9.4 returns matrix G with k = 3− 3 = 0 rows, G = [ ].

And indeed, by definition 1 + x3 is the generator polynomial of the null code {000},
which has empty generator matrix. It is a useless code but formally it is a linear and

cyclic code, so we have to allow it for reasons of consistency. The minimum distance

of the zero code is undefined. This code is (F3
2)

⊥.


