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Synopsis. Remarkably, the weights of codevectors of the dual code C⊥ are completely deter-

mined by weights of codevectors of C. This was proved by Florence Jessie MacWilliams

(1917–1990), an English-born American mathematician who spent most of her career at

Bell Labs and Harvard in the United States. We state the general case of the MacWilliams

identity. We give a proof (not examinable) for codes over Fp with prime p, and apply the

identity to deduce a formula called the Average Weight Equation, as well as the Plotkin

bound. We can use the MacWilliams identity to study Hamming codes by analysing their

dual codes, called simplex codes.

Theorem 8.1: the MacWilliams identity

If C is a q-ary linear code, WC⊥(x, y) =
1

#C
WC(x+ (q − 1)y, x− y).

Proof for prime q = p. This proof is not examinable. Since p is a prime, the field Fp consists

of elements 0, 1, . . . , p− 1 (residues of integers modulo p). Being able to explicitly list the

field elements — not possible for a general prime power q — simplifies the proof.

Let C ⊆ Fn
p be linear. We fix the complex number ω = e2πi/p, a primitive pth root of 1. We

have ωp = 1 and ω, ω2, . . . , ωp−1 ̸= 1. We can write ωa if a ∈ Fp — this complex number

is well-defined, even though a is only defined modulo p.

Given c ∈ C, v ∈ Fn
p , denote

Φ(c, v) = ωc·vxn−w(v)yw(v).
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We will compute
∑

c∈C, v∈Fn
p

Φ(c, v) in two different ways.

Way 1 . If v ∈ C⊥, then c · v = 0 for all c ∈ C, so Φ(c, v) = xn−w(v)yw(v).

If, however, v /∈ C⊥, there is a codevector d ∈ C such that d · v = a ̸= 0 in Fp. Observe

that Φ(d+ c, v) = ωd·vΦ(c, v) = ωaΦ(c, v). We know that d+ C = C, so∑
c∈C

Φ(c, v) =
∑
c∈C

Φ(d+ c, v) = ωa
∑
c∈C

Φ(c, v) =⇒ (ωa − 1)
∑
c∈C

Φ(c, v) = 0.

Since ωa ̸= 1, we have ∑
c∈C

Φ(c, v) = 0 for v /∈ C⊥.

We conclude that∑
c∈C, v∈Fn

p

Φ(c, v) =
∑

c∈C, v∈C⊥

Φ(c, v) = #C
∑
v∈C⊥

xn−w(v)yw(v) = (#C)WC⊥(x, y).

Way 2 . If v is a symbol, v ∈ Fp, we introduce the “weight of v”, w(v), as follows:

w(v) = 1 if v ̸= 0 and w(v) = 0 if v = 0. Surely, for a vector v ∈ Fn
p we have w(v) =

w(v1) + · · ·+ w(vn). We then rewrite

Φ(c, v) = ωc1v1+···+cnvnx1−w(v1)yw(v1) . . . x1−w(vn)yw(vn)

= ωc1v1x1−w(v1)yw(v1) . . . ωcnvnx1−w(vn)yw(vn).

We now sum over v ∈ Fn
p first: each coordinate of v runs over Fp = {0, 1, . . . , p− 1}. So,

for a fixed c ∈ C,

∑
v∈Fn

p

Φ(c, v) =

p−1∑
v1=0

· · ·
p−1∑
vn=0

Φ(c, v)

=

p−1∑
v1=0

ωc1v1x1−w(v1)yw(v1) · · ·
p−1∑
vn=0

ωcnvnx1−w(vn)yw(vn). (*)

Let us analyse the first factor in the product on the right-hand side of (*):

p−1∑
v1=0

ωc1v1x1−w(v1)yw(v1) = x+
( p−1∑
v1=1

ωc1v1
)
y.

If c1 = 0, the coefficient of y is clearly 1 + 1 + · · · + 1 = p − 1, whereas if c1 ̸= 0, the

coefficient of y is the sum of a geometric progression

p−1∑
v1=1

ωc1v1 = −1 +
p−1∑
v1=0

ωc1v1 = −1 + 1− (ωc1)p

1− ωc1
= −1 + 0

1− ωc1
= −1
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since (ωc1)p = 1. Hence the first factor on the right-hand side of (*) is{
x+ (p− 1)y, if c1 = 0,

x− y, if c1 ̸= 0.

The same applies to the second, ..., nth factor in (*), hence (*) has w(c) factors equal

to x − y and n − w(c) factors equal to x + (p − 1)y. In other words, (*) evaluates as

(x+ (p− 1)y)n−w(c)(x− y)w(c). Therefore,∑
c∈C

∑
v∈Fn

p

Φ(c, v) =
∑
c∈C

(x+ (p− 1)y)n−w(c)(x− y)w(c) = WC(x+ (p− 1)y, x− y).

Comparing Way 2 and Way 1, we conclude that WC(x+(p−1)y, x−y) = (#C)WC⊥(x, y).

This is the MacWilliams identity for q = p.

Simple examples where the MacWilliams identity is used

Let us obtain a short formula for the weight enumerator of the trivial code Fn
q by writing Fn

q

as the dual code of the null code Null = {0}. Of course, every vector in Fn
q is orthogonal

to 0 which explains why Fn
q = Null⊥.

Clearly, #Null = 1 and WNull (x, y) = xn because N has only one codevector, which is of

weight 0. Now use the MacWilliams identity:

Example: the weight enumerator of the trivial code Fn
q

WFn
q
(x, y) = 1

#NullWNull (x+ (q − 1)y, x− y) = (x+ (q − 1)y)n.

We can obtain the same formula for the weight enumerator of the trivial code Fn
q without

the use of MacWilliams identity, see earlier exercises.

The binary (q = 2) MacWilliams identity allows us to immediately obtain a short formula

for the weight enumerator of the even weight code En. Indeed, En = Rep(n,F2)
⊥, and

the binary repetition code has weight enumerator WRep(n,F2)(x, y) = xn + yn (see example

sheets). Also, #Rep(n,F2) = 2. Hence

Example: the weight enumerator of En

WEn(x, y) =
1

#Rep(n,F2)
WRep(n,F2)(x+ y, x− y) = 1

2((x+ y)n + (x− y)n).

Using the binomial formula, we can expand this sum as xn +
(
n
2

)
xn−2y2 +

(
n
4

)
xn−4y4 + . . .

In particular, this proves that w(En) = d(En) = 2 as the lowest positive power of x in this

polynomial is two.



MacWilliams identity, average weight equation, Plotkin bound, simplex codes 87

The Average Weight Equation for linear codes

The proof of the following result involves a surprising use of the MacWilliams identity.

Theorem 8.2: the Average Weight Equation

If C is a q-ary linear code of length n, the average of the weights of all the codevectors

of C is (n−z)(1−q−1), where z is the number of zero columns in a generator matrix

of C.

Proof. We count codevectors of weight 1 in the dual code C⊥. By Theorem 5.1, v ∈ C⊥ iff

vGT = 0 where G is a generator matrix of C. If v is of weight 1 with vi ̸= 0, then the ith

column of G is zero. The non-zero vi can be chosen in q − 1 ways, so each zero column of

G gives rise to q− 1 vectors of weight 1 in C⊥, and there are z(q− 1) such vectors in total.

We must get the same number as the coefficient of xn−1y in the weight enumerator

WC⊥(x, y), which by the MacWilliams identity equals

1

#C
WC(x+ (q − 1)y, x− y) =

1

#C

∑
v∈C

(x+ (q − 1)y)n−w(v)(x− y)w(v). (8.1)

We put x = 1 and work out the coefficient of y. By the Binomial Theorem,

(1 + (q − 1)y)n−w(v) = 1 + (n− w(v))(q − 1)y + higher powers of y,

(1− y)w(v) = 1− w(v)y + higher powers of y,

and so the coefficient of y in the product of these two expressions is

(n− w(v))(q − 1)− w(v) = n(q − 1)− qw(v).

Summing over v ∈ C then dividing by #C gives the coefficient of y in (8.1) as n(q − 1)−
q 1
#C

∑
v∈C w(v). We thus get the equation

z(q − 1) = n(q − 1)− q
1

#C

∑
v∈C

w(v),

hence the average of all weights, 1
#C

∑
v∈C w(v), is (n− z) q−1

q as claimed.

A simple example where we verify the Average Weight Equation

The easiest case where we can explicitly verify the Average Weight Equation is C =

Rep(n,Fq), the q-ary repetition code of length n. The code consists of the zero vector

and q − 1 vectors of the form aa . . . a where a ∈ Fq \ {0}, of weight n. The total number

of codevectors is q. The one-row generator matrix
[
1 1 . . . 1

]
of the code does not

contain a zero column, so z = 0. We arrive at the following
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Example: average weight of a codevector of Rep(n,Fq)

The average weight of a codevector of Rep(n,Fq) is

1× 0 + (q − 1)× n

q
= n(1− q−1),

which agrees with the Average Weight Equation.

Exercise. Verify the Average Weight Equation by explicit calculation for the trivial code Fn
q .

Simplex codes

What is the weight enumerator of Ham(r, q)? This question can be answered using the

MacWilliams identity. In the particular case q = 2, the answer can be explored further to

give the probability Pundetect for the binary Hamming code (we do not pursue this here).

Recall from the previous chapter that the Hamming codes are defined via an interesting

check matrix whose columns form a maximal set of columns where no two columns are

proportional. What is the code generated by this matrix? We analyse these codes in the

rest of this chapter.

Definition: simplex code

A simplex code Σ(r, q) is defined as Ham(r, q)⊥.

Remark: recall that a regular simplex in an n-dimensional euclidean space Rn is a convex

polytope whose vertices are n+1 points with the same distance between each pair of points.

Thus, a 2-dimensional regular simplex is an equilateral triangle, and a 3-dimensional regular

simplex is a regular tetrahedron. The following result motivates our terminology.

Theorem 8.3: properties of a simplex code

The simplex code Σ(r, q) has length n = (qr − 1)/(q − 1) and dimension r. The

Hamming distance between each pair of codevectors is qr−1.

Proof. The length and dimension of Σ(r, q) = Ham(r, q)⊥ are dictated by the parameters

of the Hamming code, see Theorem 7.3. It remains to calculate the distances.

Since Σ(r, q) is linear, it suffices to show that every non-zero v ∈ Σ(r, q) has weight qr−1.

By linear algebra, there is a basis of Σ(r, q) which contains v, hence v is the first row of

some generator matrix H ′ of Σ(r, q).
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Since H ′ is a check matrix for Ham(r, q) and d(Ham(r, q)) = 3, by Distance Theorem 7.2

no two columns of H ′ are proportional, hence the columns of H ′ represent distinct lines in

Fr
q. Therefore, the weight of v (the first row of H ′) is the number of lines where the first

entry of a representative vector is not zero.

The total number of possible columns of size r with non-zero top entry is (q−1) (choices for

the top entry) ×qr−1 (choices for the other entries which are unrestricted). But (q−1) non-

zero columns form a line, hence the number of required lines is (q− 1)qr−1/(q− 1) = qr−1.

Hence w(v) = qr−1 as claimed.

The weight enumerator of a binary Hamming code

By Theorem 8.3, the weight enumerator of the simplex code Σ(r, q) is

WΣ(r,q)(x, y) = xn + (qr − 1)xn−qr−1
yq

r−1

where n =
qr − 1

q − 1
. This formula reflects the fact that there is one codevector of weight 0

and qr − 1 codevectors of weight qr−1 in Σ(r, q).

The weight enumerator ofHam(r, q) = Σ(r, q)⊥ can then be obtained using the MacWilliams

identity. We do this for a binary Hamming code.

Proposition 8.4: the weight enumerator of Ham(r, 2)

WHam(r,2)(x, y) =
1

n+1

(
(x+ y)n + n(x+ y)

n−1
2 (x− y)

n+1
2

)
where n = 2r − 1.

Proof. The MacWilliams identity, Theorem 8.1, in the case of binary codes givesWC⊥(x, y) =
1

#CWC(x + y, x − y). We put C = Σ(r, 2) so that C⊥ = Ham(r, 2). By Theorem 7.3,

n = 2r − 1 so that #C = 2r = n+1 and the weight of each non-zero codevector in Σ(r, 2)

is qr−1 = 2r−1 = n+1
2 . We also have n− qr−1 = n− n+1

2 = n−1
2 .

Substituting these in the MacWilliams identity, we obtain WHam(r,2) as stated.

Example: weight enumerator of the “original” Hamming code

WHam(3,2) =
1

8

(
(x+ y)7 + 7(x+ y)3(x− y)4

)
= x7 + 7x4y3 + 7x3y4 + y7.

Exercise: explicitly expand the left-hand side in the formula for WHam(3,2).

Exercise: Use Proposition 8.4 to show that every binary Hamming code contains the vector

111 . . . 1 (all bits equal to 1).
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The Plotkin Bound

The Plotkin bound was obtained by Morris Plotkin in 1960 for arbitrary (not necessarily

linear) binary codes. It applies to codes with very large minimum distance: d > n/2 where

n is the length of the code. A proof of the general case of the bound by a direct counting

argument can be found in the literature. We will only prove the statement for linear codes,

which will serve as an example of the power of the MacWilliams identity and its corollary,

the Average Weight Equation. (Historical note: the MacWilliams identity was proved in

1961, i.e., after the Plotkin bound.)

Proposition 8.5: The Plotkin bound for binary linear codes

If C ⊆ Fn
2 is a linear code such that d = d(C) > n/2, then #C ≤ d

d− n/2
.

Proof. Let M = #C. The code C contains the zero vector, 0, and M −1 vectors of weight

at least d. Then the average weight of a codevector of C is at least

1× 0 + (M − 1)× d

M
=
(
1− 1

M

)
d.

So from the Average Weight Equation (where z is the number of zero columns in a generator

matrix of C) we obtain

(n− z)
(
1− 1

2

)
≥
(
1− 1

M

)
d =⇒ n

2
≥
(
1− 1

M

)
d ⇐⇒ n

2d
≥ 1− 1

M

so that 1/M ≥ 1− n/(2d) = (2d− n)/(2d) and M ≤ 2d/(2d− n), as claimed.


