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Reed-Muller codes

Version 2023-12-03. To accessible online version of this chapter

Synopsis. The minimum distance of a perfect code cannot exceed 7 unless the code is a

repetition code. This is disappointingly low. In this final part of the course, we construct

Reed-Muller codes, a family of codes with large minimum distance. Unfortunately, they are

not perfect. The construction is based on Boolean functions, which arise in elementary logic

as columns of truth tables and are used in cicruit design.

Boolean functions

Fix m ≥ 1. Denote by V m the set of all binary words of length m. (It is the same as Fm
2

but viewed without any vector space structure).

For example, V 3 is the set {000, 001, 010, 011, 100, 101, 110, 111}.

Definition: Boolean functions

A Boolean function is a (set-theoretical) function f : V m → F2.

Remark: the number of Boolean functions

The total number of all Boolean functions on V m is |F2||Vm| = 22
m
.

Remark: Boolean functions as rows of a truth table. One has certainly met Boolean

functions when constructing truth tables for statements in basic logic. To give an illustration,

let m = 3. Consider statements which involve variables x1, x2, x3, each of which can take

values 0 (false) or 1 (true).

We will represent a logical statement by a row (not column) in a truth table. (We use rows

because it is common in Coding Theory to think of codevectors as of row vectors; and in
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Reed-Muller codes, codevectors arise from functions.) In our example (m = 3), the table

will have 8 columns:

x1 0 1 0 1 0 1 0 1

x2 0 0 1 1 0 0 1 1

x3 0 0 0 0 1 1 1 1

(x1 and x2) =⇒ x3 1 1 1 0 1 1 1 1

0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1

v2v3 0 0 0 0 0 0 1 1

In this table, (x1 and x2) =⇒ x3 is a statement whose truth value depends on the values

of x1, x2 and x3. Therefore, it can be viewed as a Boolean function: its value at the binary

word 000 is 1, at the word 100 the value is 1, and so on. The only binary word where this

function takes the value 0 is the word 110: indeed, if x1 and x2 are true, then x1 and x2
is true, but x3 is false, and the value of the implication “true =⇒ false” is false.

(The other rows in the table will be explained below.)

The Boolean algebra

Because Boolean functions take values in F2 = {0, 1} which is a field, Boolean functions

can be added and multiplied pointwise: if f, g : V m → F2, one has the functions

f + g, fg : V m → F2; (f + g)(x) = f(x) + g(x), (fg)(x) = f(x)g(x), ∀x ∈ V m.

Also, there are constant functions 0 and 1. (They are shown in the 2nd, respectively 3rd,

row of the truth table above.) The Boolean function 1 is often called the tautological truth.

Definition: Boolean algebra

The vector space of Boolean functions f : V m → F2, together with the operation of

multiplication of functions, is the Boolean algebra on V m.

The traditional logical operations can be written in terms of the Boolean algebra operations

+ and ×. Clearly, multiplication is the same as AND:

fg = f and g.

The addition obeys the rule 0 + 0 = 0, 0 + 1 = 1+ 0 = 1, 1 + 1 = 0. The logical operation

which corresponds to addition is called the exclusive OR :

f + g = f xor g = ((f or g) and not(f and g)) .
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How to write elements of the Boolean algebra as row vectors?

To write elements of the Boolean algebra on V m as binary vectors, so that we can define

the weight, the Hamming distance etc, we need to order all binary words of length m as

b0, . . . , b2m−1.

The standard ordering is obtained by interpreting the word x1x2 . . . xm as a number written

in base 2, i.e., the number 2m−1x1+ . . .+2xm−1+xm. Thus, the binary words of length 3

appear in the following order: 000, 001, 010, 011, 100, 101, 110, 111. However, the exact

choice of the order is not important, as we will see.

Definition: value vector of a Boolean function

Let f : V m → F2 be a Boolean function. The value vector of f is the binary vector

f = (f(b0), . . . , f(b2m−1)) of length 2m, where b0, . . . , b2m−1 is the chosen ordering

of V m.

The next notion does not at all depend on the chosen ordering of words in V m:

Definition: weight of a Boolean function

The weight of the Boolean function f is defined as the weight of the value vector f .

The weight does not depend on the ordering of the binary words, because

w(f) = #{b ∈ V m : f(b) = 1}.

The monomial basis of the Boolean algebra

We will now introduce two special kinds of elements of the Boolean algebra: coordinate

functions and, more generally, monomial functions.

Definition: coordinate function

The Boolean function vi : V
m → F2 defined by vi(x1, x2, . . . , xm) = xi is called the

ith coordinate function.

Definition: monomial, polynomial, degree

To each subset {i1, . . . , ir} ⊆ {1, . . . ,m} there corresponds the monomial function

(or monomial) vi1 . . . vir , of degree r.

Also, 1 is the monomial function corresponding to the set ∅, of degree 0.

A linear combination of monomials is a polynomial. The degree of a polynomial f

is the highest degree of a monomial which appears in f .
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Remark: properties of monomials.

� Observation: because the values of any Boolean function are 0 and 1, one has vi =

v2i = v3i = . . .. This is the reason why there are no higher powers of the vi in the

definition of a monomial.

� The above also implies that the product of monomials is again a monomial, and the

product of polynomials is a polynomial.

� There are 2m monomials in the Boolean algebra on V m (because there are 2m subsets

of {1, . . . ,m}).

� The weight of a monomial is calculated in the following result.

Lemma 11.1: weight of a monomial

A monomial vi1vi2 . . . vir in the Boolean algebra on V m has weight 2m−r. That is,

w(v) = 2m−deg v if v is a monomial.

Proof. If b = x1x2 . . . xm is a binary word, vi1vi2 . . . vir(b) = 1 if and only if xi1 = xi2 =

· · · = xir = 1. Hence the number of binary words in V m where this monomial has value 1

is equal to the number of ways to choose the bits xj where j /∈ {i1, . . . , ir}. There are 2

choices (0 or 1) for each one of those m − r bits, hence the total number of such binary

words is 2m−r, and w(vi1 . . . vir) = #{b ∈ V m : vi1 . . . vir(b) = 1} = 2m−r.

Theorem 11.2: monomial basis

Monomials form a basis of the Boolean algebra.

Proof. First, we prove by contradiction that monomials are linearly independent.

Assume for contradiction that a non-empty linear combination (i.e., a sum, as we are working

over F2) of monomials equals the zero Boolean function:

vS1 + vS2 + · · ·+ vSk
= 0, k ≥ 1,

where S1, . . . Sk are some subsets of the index set {1, . . . ,m}. Without the loss of generality,

assume that vSk
has the highest degree:

deg vSi ≤ deg vSk
, i.e., #Si ≤ #Sk for all i = 1, . . . , k − 1.
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Note that if S, T ⊆ {1, . . . ,m} then vSvT = vS∪T . Let now T = {1, . . . ,m} \ Sk, the

complement of the set Sk. Multiplying both sides by vT , we obtain

vS1∪T + vS2∪T + · · ·+ vSk∪T = 0. (∗)

We have Sk ∪ T = {1, . . . ,m}. If i < k then the set Si cannot contain Sk, and so

Si ∪ T ̸= {1, . . . ,m} and deg vSi∪T < m. Rewrite (∗) as

vS1∪T + vS2∪T + · · ·+ vSk−1∪T = v1v2 . . . vm.

The left-hand side is a sum of monomials of degree less than m. By Lemma 11.1, these

monomials have value vectors of even weight. A sum of vectors of even weight is a vector of

even weight: we know that the binary even weight code is linear. But the right-hand side is

the monomial v1 . . . vm which by Lemma 11.1 has weight 1, which is odd. This contradiction

proves that monomials are linearly independent.

It remains to show that the monomials are a spanning set in the Boolean algebra. There

are 2m monomials, so we can form 2(2
m) linear combinations of monomials by putting a

coefficient of 0 or 1 in front of each monomial. All these linear combinations are distinct, by

linear independence. On the other hand, there are 2(2
m) Boolean functions on V m. Hence

every Boolean function is a linear combination of monomials.

A basis is a set which is linearly independent and spanning, so the Theorem is proved.

Corollary 11.3: Boolean functions are polynomials

Each Boolean function on V m is uniquely written as a Boolean polynomial in the

coordinate functions v1, . . . , vm.

Remark: algebraic normal form. A representation of a Boolean function f : V m → F2

as a Boolean polynomial is sometimes referred to as the algebraic normal form of f . This

can be compared to disjunctive and conjunctive normal forms of a Boolean function used

for other purposes. Interested readers may find the details in the literature.

The Reed-Muller code

We now know that every element of the Boolean algebra on V m is a polynomial, i.e., a

sum of several monomials (squarefree products of coordinate functions). Recall also that

the degree of a polynomial is the top degree of a monomial in that polynomial, which does

not exceed m.
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Definition: Reed-Muller code

Let 0 ≤ r ≤ m. The rth order Reed-Muller code on V m, denoted R(r,m), is

the space of value vectors of polynomials of degree at most r in the Boolean algebra

on V m.

Observe that R(r,m) is spanned by the value vectors of all monomials of degree at most r.

Example: work out R(0,m)

Find the parameters and write down all codevectors of the Reed-Muller code R(0,m).

Solution. The code R(0,m) consists of value vectors of Boolean polynomials on V m of

degree ≤ 0. There are only two such polynomials, 0 and 1, hence

R(0,m) = {00 . . . 0, 11 . . . 1} = Rep(2m,F2)

is the repetition code. The length is 2m = #V m. The dimension is 1. The minimum

distance equals the length. A [2m, 1, 2m]2-code.

Example: R(m,m)

Show that R(m,m) = F2m
2 , the trivial binary code of length 2m.

Solution. R(m,m) consists of value vectors of polynomials on V m of degree ≤ m. All

Boolean polynomials have degree at most m, and, by Corollary 11.3, every possible binary

vector of length 2m is a value vector of some polynomial. Hence R(m,m) consists of all

possible binary vectors of length 2m, i.e., is the trivial code.

The key result on Reed-Muller codes is the following theorem, which gives the parameters

of these codes.

Theorem 11.4: parameters of a Reed-Muller code

R(r,m) has length 2m, dimension
(
m
0

)
+
(
m
1

)
+ . . . +

(
m
r

)
and minimum distance

2m−r.

Proof. Length = 2m by construction: a value vector is made up of 2m bits obtained by

evaluating the given function on the 2m binary words in V m.

Value vectors of monomials of degree 0, 1, . . . , r span R(r,m) by definition of R(r,m), and

are linearly independent by Theorem 11.2, hence form a basis of R(r,m). The number of

monomials of degree d is the same as the number of d-element subsets of {1, . . . ,m}, which
is
(
m
d

)
, so the total number of monomials in the basis of R(r,m) — i.e., the dimension of

R(r,m) — is as stated.
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Minimum distance: the code R(r,m) contains monomials of degree r, for example,

v1v2 . . . vr. By Lemma 11.1, these have weight 2m−r. Hence d(R(r,m)) = w(R(r,m))

is at most 2m−r.

It remains to show that w(R(r,m)) ≥ 2m−r. We do this by induction in m.

Base case m = 1. According to the Examples above, the two possible codes are R(0, 1) =

Rep(2,F2) of weight 2 = 21−0 and R(1, 1) = F2m
2 of weight 1 = 21−1. So the inequality

w(R(r,m)) ≥ 2m−r is satisfied when m = 1.

Inductive step. Assume w(R(r,m−1)) ≥ 2m−1−r for all r = 0, . . . ,m−1. This means that

the weight of any non-zero polynomial of degree ≤ r in v1, . . . , vm−1 is at least 2m−1−r:

h ̸= 0, deg h ≤ r =⇒ #{y ∈ V m−1 : h(y) = 1} ≥ 2m−1−r. (†)

The set V m of binary words of length m splits into two subsets,

V m−10 = {x1 . . . xm : xm = 0} and V m−11 = {x1 . . . xm : xm = 1}

of words that end in 0 and words that end in 1, respectively. We need to take a polynomial

0 ̸= f : V m → F2 of degree ≤ r and prove that w(f) ≥ 2m−r. We have

w(f) = #{b ∈ V m−10 : f(b) = 1}+#{b ∈ V m−11 : f(b) = 1}. (‡)

Each monomial in f contains a copy of vm or none, so we can write

f = g + hvm,

where g, h are polynomials in v1, . . . , vm−1.

The case h = 0. Here g is a non-zero polynomial of degree ≤ r in v1, . . . , vm−1, and so

r ≤ m − 1. By (†), there are at least 2m−1−r words y ∈ V m−1 where g(y) = 1. For

each such word y we have y0 ∈ V m−10, y1 ∈ V m−11 and f(y0) = f(y1) = 1, and so

y contributes twice when counting the weight of f in (‡). Hence w(f) = 2w(g) and so

w(f) ≥ 2× 2m−1−r = 2m−r.

The case h ̸= 0. We note that the values of f on V m−10 are the same as the values of g

on V m−1, because hvm|V m−10 = 0. Furthermore, the values of f on V m−11 are the same

as the values of g + h on V m−1, because on V m−11 we have vm = 1. Hence (‡) gives

w(f) = w(g) + w(g + h).

By the triangle inequality, w(a + b) ≤ w(a) + w(b) for any vectors a, b. Hence w(g) +

w(g + h) ≥ w(g + (g + h)) = w(h). Here deg h ≤ r − 1 because deg hvm ≤ r, so the

inductive hypothesis (†) applies and gives w(h) ≥ 2m−1−(r−1) = 2m−r. We proved that

w(f) ≥ 2m−r, as required.

To conclude, by induction w(R(r,m)) ≥ 2m−r for all m and all r ≤ m.
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The key duality between Reed-Muller codes

We finish the chapter by identifying the dual code of R(r,m), which happens to be another

Reed-Muller code.

Theorem 11.5: duality between Reed-Muller codes

For all m ≥ 1 and for all r such that 0 ≤ r ≤ m− 1,

R(m− 1− r,m) = R(r,m)⊥.

Proof. If f, g : V m → F2 are Boolean functions, the definition of inner product means that

f · g =
∑
b∈V m

f(b)g(b) =
∑
b∈V m

(fg)(b).

If f is a monomial of degree ≤ r and g is a monomial of degree ≤ m− 1− r, then fg is a

monomial of degree ≤ m − 1. By Lemma 11.1, there are exactly 2m−deg fg words b ∈ V m

such that (fg)(b) = 1. Since m − deg fg ≥ 1, 2m−deg fg is an even number, and so the

sum
∑

b∈V m(fg)(b) is zero in F2. This shows that f is orthogonal to g.

Since monomials f of degree ≤ r span R(r,m), this shows that g ∈ R(r,m)⊥. Thus,

R(m− 1− r,m) is spanned by elements of R(r,m)⊥, so R(m− 1− r,m) ⊆ R(r,m)⊥.

We will now compare the dimensions. We have dimR(m−1−r,m) =
(
m
0

)
+ · · ·+

(
m

m−1−r

)
.

Using the relation
(
m
i

)
=
(

m
m−i

)
, we rewrite this as

(
m
m

)
+
(

m
m−1

)
+ · · · +

(
m
r+1

)
. Finally,

dimR(m − 1 − r,m) + dimR(r,m) =
∑m

i=0

(
m
i

)
= 2m, the length of the Reed-Muller

codes. Hence dimR(m− 1− r,m) = 2m − dimR(r,m) = dimR(r,m)⊥.

Thus, R(r,m)⊥ contains subspace R(m − 1 − r,m) of the same dimension as R(r,m)⊥,

hence a subset R(m − 1 − r,m) of the same cardinality as R(r,m)⊥. We conclude that

R(r,m)⊥ = R(m− 1− r,m).

Exercise. The code R(m,m) is excluded from Theorem 11.5. How would you define

“R(−1,m)” which should be the dual of R(m,m)?

Theorem 11.5 can be used to identify particular Reed-Muller codes and to deduce their

further properties. Examples of this are in the exercises to this chapter.


